

Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140 www.energyfuels.com

February 25, 2015

Sent VIA OVERNIGHT DELIVERY

Mr. Rusty Lundberg Director Division of Radiation Control Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144850 Salt Lake City, UT 84114-4820

DRC-2015-001483

Re: Transmittal of 4th Quarter 2014 Routine Chloroform Monitoring Report UDEQ Docket No. UGW-20-01 White Mesa Uranium Mill

Dear Mr. Lundberg:

5

Enclosed are two copies of the White Mesa Uranium Mill Chloroform Monitoring Report for the 4th Quarter of 2014 as required by the Notice of Violation and Groundwater Corrective Action Order, UDEQ Docket No. UGW-20-01 as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

atti

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Quality Assurance Manager

CC: David C. Frydenlund Harold R. Roberts David E. Turk Dan Hillsten Scott Bakken

White Mesa Uranium Mill

Chloroform Monitoring Report

State of Utah Notice of Violation and Groundwater Corrective Action Order UDEQ Docket No. UGW-20-01

> 4th Quarter (October through December) 2014

> > Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

February 25, 2015

TABLE OF CONTENTS

1.0 INTRODUCTION				
	DROFORM MONITORING 1			
2.1 San	ples and Measurements Taken During the Quarter 1			
2.1.1	Chloroform Monitoring 1			
2.1.2	Parameters Analyzed			
2.1.3	Groundwater Head Monitoring			
2.2 San	upling Methodology and Equipment and Decontamination Procedures 2			
2.2.1	Well Purging and Depth to Groundwater			
2.2.2	Sample Collection			
2.3 Fiel	d Data 5			
2.4 Dep	oth to Groundwater Data and Water Table Contour Map5			
2.5 Lab	oratory Results			
2.5.1	Copy of Laboratory Results			
2.5.2	Regulatory Framework			
3.0 QUAI	LITY ASSURANCE AND DATA VALIDATION			
3.1 Fiel	d QC Samples 6			
3.2 Adł	herence to Mill Sampling SOPs			
	lyte Completeness Review			
3.4 Dat	a Validation			
3.4.1	Field Data QA/QC Evaluation7			
3.4.2	Holding Time Evaluation			
3.4.3	Receipt Temperature Evaluation			
3.4.4	Analytical Method Checklist 8			
3.4.5	Reporting Limit Evaluation			
3.4.6	Receipt pH Evaluation			
3.4.7	Trip Blank Evaluation			
3.4.8	QA/QC Evaluation for Sample Duplicates			
3.4.9	Rinsate Sample Check			
3.4.10	Other Laboratory QA/QC 10			
4.0 INTE	RPRETATION OF DATA 11			
4.1 Inte	rpretation of Groundwater Levels, Gradients and Flow Directions			
4.1.1	Current Site Groundwater Contour Map11			
4.1.2	Comparison of Current Groundwater Contour Maps to Groundwater			
	Contour Maps for Previous Quarter15			
4.1.3	Hydrographs16			
4.1.4	Depth to Groundwater Measured and Groundwater Elevation16			
4.1.5	Evaluation of the Effectiveness of Hydraulic Capture			
4.2 Rev	iew of Analytical Results18			
4.2.1	Current Chloroform Isoconcentration Map			
4.2.2	Chloroform Concentration Trend Data and Graphs18			
4.2.3	Interpretation of Analytical Data			
	G TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND			
TW4-4 OPERATIONS REPORT 21				
5.1 Intr	oduction			
5.2 Pun	np Test Data Collection			

21

5.3	Water Level Measurements	22
5.4	Pumping Rates and Volumes	
5.	4.1 MW-04	
5.	4.2 TW4-04	24
	4.3 MW-26	
5.	4.4 TW4-25	24
5.5	Mass Removed	25
5.6	Inspections	
5.7	Conditions That May Affect Water Levels in Piezometers	25
6.0	CORRECTIVE ACTION REPORT	25
6.1	Assessment of Previous Quarter's Corrective Actions	25
7.0	CONCLUSIONS AND RECOMMENDATIONS	25
8.0	ELECTRONIC DATA FILES AND FORMAT	28
9.0	SIGNATURE AND CERTIFICATION	29

LIST OF TABLES

Table 1 S	Summary of Well	Sampling for the	Period
-----------	-----------------	------------------	--------

 Table 2
 Mass of Chloroform Removed Per Well Per Quarter

Table 3Chloroform Pumping Rates and Volumes

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Weekly and Monthly Depth to Water Data
- Tab DKriged Current Quarter Groundwater Contour Map, Capture Zone Map, CaptureZone Details Map, and Depth to Water Data Table
- Tab E Kriged Previous Quarter Groundwater Contour Map
- Tab F
 Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells
- Tab G Depths to Groundwater and Elevations Over Time for Monitoring Wells
- Tab H Laboratory Analytical Reports
- Tab I Quality Assurance and Data Validation Tables
 - I-1 Field Data QA/QC Evaluation
 - I-2 Holding Time Evaluation
 - I-3 Receipt Temperature Check
 - I-4 Analytical Method Check
 - I-5 Reporting Limit Evaluation
 - I-6 Trip Blank Evaluation
 - I-7 QA/QC Evaluation for Sample Duplicates
 - I-8 QC Control Limits for Analyses and Blanks
 - I-9 Rinsate Evaluation
- Tab J Kriged Current Quarter Chloroform Isoconcentration Maps
- Tab K Analyte Concentration Data Over Time
- Tab L Chloroform Concentration Trend Graphs
- Tab M CSV Transmittal Letter
- Tab N 5-Day Notice Pursuant to the Chloroform Pumping Well Operations and Maintenance Plan, January 5, 2015

1.0 INTRODUCTION

The presence of chloroform was initially identified in groundwater at the White Mesa Mill (the "Mill") as a result of split sampling performed in May 1999. The discovery resulted in the issuance of State of Utah Notice of Violation ("NOV") and Groundwater Corrective Action Order ("CAO") State of Utah Department of Environmental Quality ("UDEQ"), Division of Radiation Control ("DRC") Docket No. UGW-20-01, which required that Energy Fuels Resources (USA) Inc. ("EFRI") submit a Contamination Investigation Plan and Report pursuant to the provisions of UAC R317-6-6.15(D).

The frequency of chloroform sampling, which was initially performed on a monthly basis, was modified on November 8, 2003. Since that time all chloroform contaminant investigation wells have been sampled on a quarterly basis.

This is the Quarterly Chloroform Monitoring Report for the fourth quarter of 2014 as required under the NOV and CAO. This report also includes the Operations Report for the Long Term Pump Test at MW-4, TW4-19, MW-26, TW4-20, and TW4-4 for the quarter.

2.0 CHLOROFORM MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Chloroform samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 Chloroform Monitoring

Quarterly sampling for chloroform monitoring parameters is currently required in the following wells:

TW4-1	TW4-10	TW4-21	TW4-28
TW4-2	TW4-11	TW4-22	TW4-29
TW4-3	TW4-12	TW4-23	TW4-30
TW4-4	TW4-13	TW4-24	TW4-31
TW4-5	TW4-14	TW4-25	TW4-32
TW4-6	TW4-16	MW-4	TW4-33
TW4-7	TW4-18	MW-26 (formerly TW4-15)	TW4-34
TW4-8	TW4-19	MW-32 (formerly TW4-17)	TW4-35
TW4-9	TW4-20	TW4-26	TW4-36
		TW4-27	

Chloroform monitoring was performed in all of the required chloroform monitoring wells. Table 1 provides an overview of all wells sampled during the quarter, along with the date samples were collected from each well, and the date(s) when analytical data were received from the contract laboratory. Table 1 also identifies equipment rinsate samples collected, as well as sample numbers associated with the deionized field blank ("DIFB") and any required duplicates.

2.1.2 Parameters Analyzed

Wells sampled during this reporting period were analyzed for the following constituents:

- Chloroform
- Chloromethane
- Carbon tetrachloride
- Methylene chloride
- Chloride
- Nitrate plus Nitrite as Nitrogen

Use of analytical methods is consistent with the requirements of the Chloroform Investigation Monitoring Quality Assurance Program (the "Chloroform QAP") attached as Appendix A to the White Mesa Uranium Mill Groundwater Monitoring QAP Revision 7.2, dated June 6, 2012.

2.1.3 Groundwater Head Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit (the "GWDP"):

- The quarterly groundwater compliance monitoring wells
- Existing monitoring well MW-4 and all of the temporary chloroform investigation wells
- Piezometers P-1, P-2, P-3, P-4 and P-5
- MW-20 and MW-22
- Nitrate monitoring wells
- The DR piezometers that were installed during the Southwest Hydrologic Investigation

In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-19, TW4-20, and TW4-4, and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TW4-21, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

EFRI completed, and transmitted to DRC on May 25, 2006, a revised QAP for sampling under the Mill's GWDP. While the water sampling conducted for chloroform investigation purposes has conformed to the general principles set out in the QAP, some of the requirements in the QAP were not fully implemented prior to DRC's approval of the QAP, for reasons set out in correspondence to DRC dated December 8, 2006. Subsequent to the delivery of the December 8, 2006 letter, EFRI discussed the issues brought forward in the letter with DRC and has received correspondence from DRC about those issues. In response to DRC's letter and subsequent discussions with DRC, EFRI modified the chloroform Quality Assurance ("QA") procedures within the Chloroform QAP. The Chloroform QAP describes the requirements of the chloroform investigation program and identifies where they differ from the Groundwater QAP. On June 20, 2009 the Chloroform QAP was modified to require that the quarterly chloroform reports include additional items specific to EFRI's ongoing pump testing and chloroform capture efforts. The Groundwater QAP as well as the Chloroform QAP, Revision 7.2 were approved by DRC on June 7, 2012.

The sampling methodology, equipment and decontamination procedures used in the chloroform contaminant investigation, as summarized below, are consistent with the approved QAP Revision 7.2 and the Chloroform QAP.

2.2.1 Well Purging and Depth to Groundwater

The wells are purged prior to sampling by means of a portable pump. A list of the wells in order of increasing chloroform concentration is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all of the non-detect wells and then move to the wells with detectable chloroform concentrations staring with the lowest concentration and proceeding to the wells with the highest concentration.

Samples are collected by means of disposable bailer(s) the day following the purging. The disposable bailer is used only for the collection of a sample from an individual well and disposed subsequent to the sampling. As noted in the approved QAP, Revision 7.2, sampling will generally follow the same order as purging; however; the sampling order may deviate slightly from the generated list. This practice does not affect the samples for these reasons: any wells sampled in slightly different order either have dedicated pumps or are sampled via a disposable bailer. This practice does not affect the quality or usability of the data as there will be no cross-contamination resulting from the sampling order.

Before leaving the Mill office, the portable pump and hose are rinsed with deionized ("DI") water. Where portable (non-dedicated) sampling equipment is used, a rinsate sample is collected at a frequency of one rinsate sample per 20 field samples. Well depth measurements are taken and the one casing volume is calculated for those wells which do not have a dedicated pump as described in Attachment 2-3 of the QAP. Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies that are used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

1. Purging three well casing volumes with a single measurement of field parameters specific conductivity, turbidity, pH, redox potential, and water temperature

- 2. Purging two casing volumes with stable field parameters for specific conductivity, turbidity, pH, redox potential, and water temperature (within 10% Relative Percent Difference ["RPD"])
- 3. Purging a well to dryness and stability (within 10% RPD) of field parameters for pH, specific conductivity, and water temperature only after recovery

If the well has a dedicated pump, it is pumped on a set schedule per the remediation plan and is considered sufficiently evacuated to immediately collect a sample; however, if a pumping well has been out of service for 48 hours or more, EFRI will follow the purging requirements outlined in Attachment 2-3 of the QAP. The dedicated pump is used to collect parameters and to collect the samples as described below. If the well does not have a dedicated pump, a Grundfos pump (9 - 10 gpm pump) is then lowered to the screened interval in the well and purging is started. The purge rate is measured for the well by using a calibrated 5 gallon bucket. This purging process is repeated at each well location moving from least contaminated to the most contaminated well. All wells are capped and secured prior to leaving the sampling location.

Wells with dedicated pumps are sampled when the pump is in the pumping mode. If the pump is not pumping at the time of sampling, it is manually switched on by the Mill Personnel. The well is pumped for approximately 5 to 10 minutes prior to the collection of the field parameters. Per the approved QAP, one set of parameters is collected. Samples are collected following the measurement of one set of field parameters. After sampling, the pump is turned off and allowed to resume its timed schedule.

2.2.2 Sample Collection

Prior to sampling, a cooler with ice is prepared. The trip blank is also gathered at that time (the trip blank for these events is provided by the Analytical Laboratory). Once Mill Personnel arrive at the well sites, labels are filled out for the various samples to be collected. All personnel involved with the collection of water and samples are then outfitted with disposable gloves. Chloroform investigation samples are collected by means of disposable bailers.

Mill personnel use a disposable bailer to sample each well that does not have a dedicated pump. The bailer is attached to a reel of approximately 150 feet of nylon rope and then lowered into the well. After coming into contact with the water, the bailer is allowed to sink into the water in order to fill. Once full, the bailer is reeled up out of the well and the sample bottles are filled as follows:

- Volatile Organic Compound ("VOC") samples are collected first. This sample consists of three 40 ml vials provided by the Analytical Laboratory. The VOC sample is not filtered and is preserved with HCl;
- A sample for nitrate/nitrite is then collected. This sample consists of one 250 ml. bottle that is provided by the Analytical Laboratory. The nitrate/nitrite sample is not filtered and is preserved with H₂SO₄;

• A sample for chloride is then collected. This sample consists of one 500 ml. bottle that is provided by the Analytical Laboratory. The chloride sample is not filtered and is not chemically preserved.

After the samples have been collected for a particular well, the bailer is disposed of and the samples are placed into the cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well.

2.3 Field Data

Attached under Tab B are copies of the Field Data Worksheets that were completed during the quarter for the chloroform contaminant investigation monitoring wells identified in paragraph 2.1.1 above, and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Attached under Tab C are copies of the Depth to Water Sheets for the weekly monitoring of MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25, and TWN-2 as well as the monthly depth to groundwater data for the chloroform contaminant investigation wells and the non-pumped wells measured during the quarter. Depth to groundwater measurements that were utilized for groundwater contours are included on the Quarterly Depth to Water Worksheet at Tab D of this report, along with the kriged groundwater contour map for the current quarter generated from this data. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab E.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

All analytical results were provided by American West Analytical Laboratory ("AWAL"). Table 1 lists the dates when analytical results were reported to the QA Manager for each sample.

Results from the analyses of samples collected for this quarter's chloroform contaminant investigation are provided under Tab H of this Report. Also included under Tab H are the results of the analyses for duplicate samples, the DIFB, and rinsate samples for this sampling effort, as identified in Table 1, as well as results for trip blank analyses required by the Chloroform QAP.

2.5.2 Regulatory Framework

As discussed in Section 1.0, above, the NOV and requirements of the CAO triggered a series of actions on EFRI's part. In addition to the monitoring program, EFRI has equipped nine wells with pumps to recover impacted groundwater, and has initiated recovery of chloroform from the perched zone.

Sections 4 and 5, below, interpret the groundwater level and flow information, contaminant analytical results, and pump test data to assess effectiveness of EFRI's chloroform capture program.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

The QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory methods and data. Identification of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check laboratory data QA/QC are discussed in Sections 3.4.4 through 3.4.9 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference ("NELAC") certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab H. Results of the review of the laboratory QA/QC information are provided under Tab I and are discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the chloroform investigation program consist of one field duplicate sample for each 20 samples, a trip blank for each shipped cooler that contains VOCs, one DIFB and rinsate samples.

During this quarter, two duplicate samples were collected as indicated in Table 1. The duplicates were sent blind to the analytical laboratory and analyzed for the same parameters as the chloroform wells.

Two trip blanks were provided by AWAL and returned with the quarterly chloroform monitoring samples.

Two rinsate blank samples were collected at a frequency of one rinsate per twenty samples per QAP Section 4.3.2 and as indicated on Table 1. Rinsate samples were labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TW4-7R). The results of these analyses are included with the routine analyses under Tab H.

In addition, one DIFB, while not required by the Chloroform QAP, was collected and analyzed for the same constituents as the well samples and rinsate blank samples.

3.2 Adherence to Mill Sampling SOPs

The QA Manager's review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the CAO for chloroform monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP identify the data validation steps and data QC checks required for the chloroform monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time check, a receipt temperature check, an analytical method check, a reporting limit evaluation, a trip blank check, a QA/QC evaluation of sample duplicates, a QC Control Limit check for analyses and blanks including the DIFB and a rinsate sample check. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab I.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of the field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and measurement of field parameters based on the requirements discussed in section 2.2.1 above. The purging technique employed determines the requirements for field parameter measurement and whether stability criteria are applied. Review of the Depth to Water data confirms that all depth measurements used for development of the groundwater contour maps were conducted within a five-day period as indicated by the measurement dates in the summary sheet under Tab D. The results of this quarter's review of field data are provided under Tab I.

Based upon the review of the field data sheets, the purging and field measurements were completed in conformance with the QAP requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TW4-01, TW4-05, TW4-08, TW4-09, TW4-11, TW4-12, TW4-16, MW-32, TW4-18, TW4-21, TW4-23, and TW4-32 were sampled after two casing volumes were removed. Field parameters (pH, specific conductivity, turbidity, water temperature, and redox potential) were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TW4-02, TW4-03, TW4-06, TW4-07, TW4-10, TW4-13, TW4-14, TW4-26, TW4-27, TW4-28, TW4-29, TW4-30, TW4-31, TW4-33, TW4-34, TW4-35, and TW4-36 were pumped to dryness before two casing volumes were evacuated. After well recovery, one set of measurements were taken. The samples were then collected, and another set of measurements were taken. Stabilization of pH, conductivity and temperature are required within 10% RPD under the QAP, Revision 7.2. The QAP requirements for stabilization were met.

Continuously Pumped Wells

Wells MW-04, TW4-04, MW-26, TW4-19, TW4-20, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample.

During review of the field data sheets, the QA Manager confirmed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

The review of the field sheets for compliance with QAP, Revision 7.2 requirements resulted in the observations noted below. The QAP requirements in Attachment 2-3 specifically state that field parameters must be stabilized to within 10% over at least 2 consecutive measurements for wells purged to 2 casing volumes or purged to dryness. The QAP Attachment 2-3 states that turbidity should be less than 5 NTU prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP Attachment 2-3 does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations below regarding turbidity measurements greater than 5 NTU are included for information purposes only.

Wells TW4-01, TW4-04, TW4-05, TW4-09, TW4-11, TW4-12, TW4-16, TW4-18, TW4-23, and TW4-32 exceeded the QAP's 5 NTU goal. EFRI's letter to DRC of March 26, 2010 discusses further why turbidity does not appear to be an appropriate parameter for assessing well stabilization. In response to DRC's subsequent correspondence dated June 1, 2010 and June 24, 2010, EFRI completed a monitoring well redevelopment program. The redevelopment report was submitted to DRC on September 30, 2011. DRC responded to the redevelopment report via letter on November 15, 2012. Per the DRC letter dated November 15, 2012, the field data generated this quarter are compliant with the turbidity requirements of the approved QAP.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab I. The samples were received and analyzed within the required holding times.

3.4.3 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement which specifies that samples be received at 6° C or lower. Sample temperatures checks are provided in Tab I. The samples were received within the required temperature limit.

3.4.4 Analytical Method Checklist

The analytical methods reported by the laboratory were checked against the required methods enumerated in the Chloroform QAP. Analytical method checks are provided in Tab I. The analytical methods were consistent with the requirements of the Chloroform QAP.

3.4.5 Reporting Limit Evaluation

The analytical method reporting limits reported by the laboratory were checked against the

reporting limits enumerated in the Chloroform QAP. Reporting Limit Checks are provided under Tab I. The analytes were measured and reported to the required reporting limits; several sets of sample results had the reporting limit raised for at least one analyte due to matrix interference and/or sample dilution. In these cases, the reported value for the analyte was higher than the increased detection limit.

3.4.6 Receipt pH Evaluation

Appendix A of the QAP states that volatile samples are required to be preserved and arrive at the laboratory with a pH less than 2. A review of the laboratory data revealed that the volatile samples were received at the laboratory with a pH less than 2.

3.4.7 Trip Blank Evaluation

Trip blank results were reviewed to identify any VOC contamination resulting from transport of the samples. Trip blank checks are provided in Tab I. The trip blank results were less than the reporting limit for all VOCs.

3.4.8 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for the duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limit and the RPD is greater than 20%. The additional duplicate information is provided for information purposes.

All duplicate results were within a 20% RPD in the quarterly samples. Duplicate results are provided under Tab I.

3.4.9 Rinsate Sample Check

Rinsate blank sample checks are provided in Tab I. The rinsate blank sample concentration levels were compared to the QAP requirements i.e., that rinsate sample concentrations be one order of magnitude lower than that of the actual well. The rinsate blank sample results were nondetect for this quarter.

While not required by the Chloroform QAP, DIFB samples are collected to analyze the quality of the DI water system at the Mill, which is also used to collect rinsate samples. A review of the analytical results reported for the DIFB sample indicated the sample results were nondetect.

3.4.10 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate analytical laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specified acceptance limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab I.

The lab QA/QC results met these specified acceptance limits except as noted below.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for the samples were within acceptable laboratory limits for the regulated compounds except as indicated in Tab I. The data recoveries which are outside the laboratory established acceptance limits do not affect the quality or usability of the data because the recoveries outside of the acceptance limits are indicative of matrix interference. Matrix interferences are applicable to the individual sample results only The requirement in the QAP to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The QAP specifies that surrogate compounds shall be employed for all organic analyses, but the QAP does not specify acceptance limits for surrogate recoveries. The analytical data associated with the routine quarterly sampling met the requirement specified in the QAP. The information from the Laboratory QA/QC Summary Reports indicates that the surrogate recoveries for the quarterly chloroform samples were within acceptable laboratory limits for the surrogate compounds. The requirement in the QAP to analyze surrogate compounds was met and the data are compliant with the QAP. Furthermore, there are no QAP requirements for surrogate recoveries.

The information from the Laboratory QA/QC Summary Reports indicates that the Laboratory Control Samples (the "LCS") recoveries were within acceptable laboratory limits for the LCS

compounds.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

The water level contour maps (See Tab D) indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa. Perched water mounding associated with the wildlife ponds locally changes the generally southerly perched water flow patterns. For example, northeast of the Mill site, mounding associated with wildlife ponds results in locally northerly flow near PIEZ-1. The impact of the mounding associated with the northern ponds, to which water has not been delivered since March 2012, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge.

Not only has recharge from the wildlife ponds impacted perched water elevations and flow directions at the site, but the cessation of water delivery to the northern ponds, which are generally upgradient of the nitrate and chloroform plumes at the site, has resulted in changing conditions that are expected to impact constituent concentrations and migration rates within the plumes. Specifically, past recharge from the ponds has helped limit many constituent concentrations within the plumes by dilution while the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound are expected to increase many constituent concentrations within the plumes while reducing hydraulic gradients and acting to reduce rates of plume migration. EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds during discussions with DRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds are expected to propagate downgradient (south and southwest) over time. Wells close to the ponds are generally expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations are generally expected to increase in downgradient wells close to the ponds before increases are detected in wells farther downgradient of the ponds. Although such increases are anticipated to result from reduced dilution, the magnitude and timing of the increases are difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. The potential exists for some wells completed in higher permeability materials to be impacted sooner than some wells completed in lower permeability materials even though the wells completed in lower permeability materials may be closer to the ponds.

Localized increases in concentrations of constituents such as chloroform and nitrate within and near the chloroform plume, and of nitrate and chloride within and near the nitrate plume, may occur even when these plumes are under control. Ongoing mechanisms that can be expected to increase constituent concentrations locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability layers receiving primarily low constituent concentration pond water will result in wells intercepting these layers receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms may be especially evident at chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20; nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2; and non-pumped wells adjacent to the pumped wells. The overall impact is expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduces concentrations. Short-term changes in concentrations at pumping wells and wells adjacent to pumping wells are also expected to result from changes in pumping conditions.

In addition to changes in the flow regime caused by wildlife pond recharge, perched flow directions are locally influenced by operation of the chloroform and nitrate pumping wells. Well defined cones of depression are evident in the vicinity of all chloroform pumping wells except TW4-4, which began pumping in the first quarter of 2010. Although operation of chloroform pumping well TW4-4 has depressed the water table in the vicinity of TW4-4, a well-defined cone of depression is not clearly evident. The lack of a well-defined cone of depression near TW4-4 likely results from 1) variable permeability conditions in the vicinity of TW4-4, and 2) persistent relatively low water levels at adjacent well TW4-14.

Nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 started pumping during the first quarter of 2013. Water level patterns near these wells are expected to be influenced by the presence of, and the decay of, the groundwater mound associated with the northern wildlife ponds, and by the persistently low water level elevation at TWN-7. By the fourth quarter of 2013, operation of the nitrate pumping system had produced well-defined impacts on water levels. The long-term interaction between the nitrate and chloroform pumping systems will require more data to be collected as part of routine monitoring.

As discussed above, variable permeability conditions likely contribute to the lack of a welldefined cone of depression near chloroform pumping well TW4-4. Changes in water levels at wells immediately south of TW4-4 resulting from TW4-4 pumping are expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south (downgradient) of TW4-4. The permeability of the perched zone at TW4-6, TW4-26, TW4-29, and TW4-33 is approximately two orders of magnitude lower than at TW4-4. Any drawdown of water levels at wells immediately south of TW4-4 resulting from TW4-4 pumping is also difficult to determine because of the general, long-term increase in water levels in this area due to recharge from the wildlife ponds.

Water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet, respectively, between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to the start of TW4-4

pumping) at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, the rate of increase in water levels at TW4-6 after the start of pumping at TW4-4 (first quarter of 2010) was reduced to less than 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4. Furthermore, water levels at TW4-6 have been trending downward since the fourth quarter of 2013 suggesting an additional influence related to the cessation of water delivery to the northern wildlife ponds as discussed above. Recharge from the southern wildlife pond is expected to continue to have an effect on water levels near TW4-4, even as the groundwater mound associated with recharge from the northern ponds diminishes over time due to cessation of water delivery to these ponds.

The lack of a well-defined cone of depression at TW4-4 is also influenced by the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. For the current quarter, the water level at TW4-14 was measured at approximately 5530.4 feet above mean sea level ("ft amsl"). This is approximately 8 feet lower than the water level at TW4-6 (approximately 5538.7 ft amsl) and 13 feet lower than the water level at TW4-4 (approximately 5543.7 ft amsl) even though TW4-4 is pumping.

Well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) has a static water level of approximately 5527.8 ft amsl, similar to TW4-14 (approximately 5530.4 ft amsl). TW4-27 was positioned at a location considered likely to detect any chloroform present and/or to bound the chloroform plume to the southeast and east (respectively) of TW4-4 and TW4-6. As will be discussed below, groundwater data collected since installation indicates that TW4-27 does indeed bound the chloroform plume to the southeast and east of TW4-4 and TW4-6 (respectively); however chloroform exceeding 70 μ g/L has been detected at recently installed temporary perched wells TW4-29 (located south of TW4-27) and TW4-33 (located between TW4-4 and TW4-29).

Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform had not been detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26 which suggested that TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-4, regardless of the flow direction implied by the low water level at TW4-14. The water level at TW4-26 (5537.1 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5538.7 feet amsl), and TW4-23 (5540.3 feet amsl).

Hydraulic tests indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4 (see Hydro Geo Chem, Inc. [HGC], September 20, 2010: Hydraulic Testing of TW4-4, TW4-6, and TW4-26, White Mesa Uranium Mill, July 2010; and HGC, November 28, 2011: Installation, Hydraulic Testing, and Perched Zone Hydrogeology of Perched Monitoring Well TW4-27, White Mesa Uranium Mill Near Blanding, Utah). The similar water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27 suggest that both wells are completed in materials having lower permeability than nearby wells. The low permeability condition likely reduced the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appeared anomalously low. This behavior is consistent with hydraulic test data collected from

recently installed wells TW4-29, TW4-30, TW4-31, TW4-33, TW4-34 and new well TW4-35, which indicate that the permeability of these wells is one to two orders of magnitude higher than the permeability of TW4-27 (see: HGC, January 23, 2014, Contamination Investigation Report, TW4-12 and TW4-27 Areas, White Mesa Uranium Mill Near Blanding, Utah; and HGC, July 1, 2014, Installation and Hydraulic Testing of TW4-35 and TW4-36, White Mesa Uranium Mill Near Blanding, Utah [As-Built Report]). The low permeability at TW4-14 and TW4-27 is expected to retard the transport of chloroform to these wells (compared to nearby wells). As will be discussed in Section 4.2.3, fourth quarter, 2014 chloroform concentrations at TW4-26 and TW4-27 are 2.5 ug/L and non-detect, respectively and both wells are outside the chloroform plume.

Hydraulic tests also indicate that the permeability at new well TW4-36 is slightly higher than but comparable to the low permeability at TW4-27, suggesting that TW4-36, TW4-14 and TW4-27 are completed in a continuous low permeability zone.

Although chloroform exceeding 70 µg/L was detected at recently installed wells TW4-29 (located south of TW4-27) and TW4-33 (located between TW4-4 and TW4-29), chloroform was not detected at recently installed wells TW4-30 (located east and downgradient of TW4-29), nor TW4-31 (located east of TW4-27), nor TW4-34 (located south and cross-gradient of TW4-29), nor at new well TW4-35 (located southeast and cross- to downgradient of TW4-29). The detections at TW4-29 and TW4-33 suggest that chloroform migrated southeast from the vicinity of TW4-4 to TW4-33 then TW4-29 in a direction nearly cross-gradient with respect to the direction of groundwater flow implied by the groundwater elevations. Such migration is possible because the water level at TW4-29, TW4-30, and TW4-31 are one to two orders of magnitude lower than the conductivity of TW4-4, and one to two orders of magnitude higher than the conductivity of TW4-27. The permeability and water level distributions are generally consistent with the apparent nearly cross-gradient migration of chloroform around the low permeability zone defined by TW4-36, TW4-14, and TW4-27.

Data from existing, recently installed and new wells indicate that:

- Chloroform exceeding 70 μg/L at TW4-29 is bounded by concentrations below 70 μg/L at wells TW4-26, TW4-27, TW4-30, TW4-34, and new well TW4-35. TW4-30 is downgradient of TW4-29; TW4-26 is upgradient of TW4-29; TW4-27 and TW4-34 are cross-gradient of TW4-29; and new well TW4-35 is cross- to downgradient of TW4-29.
- 2. Chloroform concentrations at TW4-33 that are lower than concentrations at TW4-29, and the likelihood that a pathway exists from TW4-4 to TW4-33 to TW4-29, suggest that concentrations in the vicinity of TW4-33 were likely higher prior to initiation of TW4-4 pumping, and that lower concentrations currently detected at TW4-33 are due to its closer proximity to TW4-4.

Furthermore, TW4-4 pumping is likely to reduce chloroform at both TW4-33 and TW4-29 by cutting off the source. The decrease at TW4-33 is expected to be faster than at TW4-29 because TW4-33 is in closer proximity to TW4-4 pumping. Such behavior is expected by analogy with the decreases in chloroform concentrations that occurred at TW4-6 and TW4-26 once TW4-4

pumping began. Since installation in 2013, concentrations at TW4-29 and TW4-33 appear to be relatively stable.

4.1.2 Comparison of Current Groundwater Contour Maps to Groundwater Contour Maps for Previous Quarter

The groundwater contour map for the Mill site for the third quarter of 2014, as submitted with the Chloroform Monitoring Report for the third quarter of 2014, is attached under Tab E.

A comparison of the water table contour maps for the current quarter (fourth quarter of 2014) to the water table contour maps for the previous quarter (third quarter of 2014) indicates slightly increased drawdowns related to operation of chloroform pumping wells MW-26 and TW4-20, and nitrate pumping wells TW4-22, TW4-24, and TW4-25. Nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 were brought into operation during the first quarter of 2013 and their impact on water level patterns was evident as of the fourth quarter of 2013. While water levels in nitrate pumping wells TW4-22, TW4-24, and TW4-25 showed decreases, the water level at TWN-2 showed an increase this quarter.

As discussed in Section 4.1.1, pumping at chloroform well TW4-4, which began in the first quarter of 2010, has depressed the water table near TW4-4, but a well-defined cone of depression is not clearly evident, likely due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Small (<1 foot) changes in water levels were reported at the majority of site wells; water levels and water level contours for the site have not changed significantly since the last quarter except for a few locations. Reported decreases in water levels (increases in drawdown) of approximately 3.4, 1.6, 1.4, 2.5, and 2.8 feet occurred in chloroform pumping wells MW-26 and TW4-20, and nitrate pumping wells TW4-22, TW4-24, and TW4-25, respectively. An increase in water level (decrease in drawdown) of approximately 5 feet was reported for nitrate pumping well TWN-2. Changes in water levels at other pumping wells (chloroform pumping wells MW-4, TW4-4, and TW4-19) were less than 1 foot. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken.

Although decreases in water levels (increases in drawdown) occurred at chloroform pumping wells MW-26 and TW4-20, and nitrate pumping wells TW4-22, TW4-24, and TW4-25, the apparent capture of these wells relative to other pumping wells has increased in some cases and decreased in others, while the overall capture of the combined pumping systems has increased slightly.

Reported water level decreases of less than 1 foot at Piezometers 1 through 3, TWN-1, TWN-4, TWN-6, TWN-18, and MW-19 may result from cessation of water delivery to the northern wildlife ponds as discussed in Section 4.1.1 and the consequent continuing decay of the associated perched water mound. Reported water level decreases of approximately 0.6 feet and 0.7 feet at Piezometers 4 and 5, respectively, may result from reduced recharge at the southern wildlife pond.

Reported water levels decreased by approximately 4.3 feet at MW-20 and increased by approximately 4.8 feet at MW-37 between the previous quarter and the current quarter. Water level variability at these wells is likely the result of low permeability and variable intervals between purging/sampling and water level measurement. A decrease in water level of approximately 2.9 feet and increases of approximately 2.4 feet and 2.9 feet were reported at DR-17, MW-23 and TW4-21, respectively.

4.1.3 Hydrographs

Attached under Tab F are hydrographs showing groundwater elevation in each chloroform contaminant investigation monitor well over time.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached under Tab G are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.1.5 Evaluation of the Effectiveness of Hydraulic Capture

Perched water containing chloroform has been removed from the subsurface by operating chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. The primary purpose of the pumping is to reduce total chloroform mass in the perched zone as rapidly as is practical. Pumping wells upgradient of TW4-4 were chosen because 1) they are located in areas of the perched zone having relatively high permeability and saturated thickness, and 2) high concentrations of chloroform were detected at these locations. The relatively high transmissivity of the perched zone in the vicinity of these pumping wells results in the wells having a relatively high productivity. The combination of relatively high productivity and high chloroform concentrations allows for a high rate of chloroform mass removal. TW4-4 is located in a downgradient area having relatively high chloroform concentrations but relatively small saturated thickness, and at a transition from relatively high to relatively low permeability conditions downgradient of TW4-4. As with the other chloroform pumping wells, pumping TW4-4 helps to reduce the rate of chloroform migration in downgradient portions of the plume.

The impact of chloroform pumping is indicated by the water level contour maps attached under Tabs D and E. Cones of depression are evident in the vicinity of MW-4, MW-26, TW4-19, and TW4-20 which continue to remove significant quantities of chloroform from the perched zone. The water level contour maps indicate effective capture of water containing high chloroform concentrations in the vicinities of these pumping wells. As discussed in Section 4.1.1, the drawdown associated with chloroform pumping well TW4-4 is likely less apparent due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Compared to last quarter, reported changes in water levels at nitrate pumping wells other than TWN-2 were less than three feet, as were the reported water level changes at chloroform pumping wells other than MW-26. A large increase of approximately 5 feet was reported for nitrate pumping well TWN-2, and a decrease of approximately 3.4 feet was reported for

chloroform pumping well MW-26. The apparent overall capture of the combined nitrate and chloroform pumping systems has increased slightly since last quarter.

The capture associated with nitrate pumping wells is expected to increase over time as water levels continue to decline due to cessation of water delivery to the northern wildlife ponds and continued pumping. Slow development of hydraulic capture is consistent with and expected based on the relatively low permeability of the perched zone at the site.

Chloroform concentrations at many locations have been or appear to be affected by changes associated with reduced dilution from the wildlife ponds and nitrate pumping. For example, increases in chloroform at TW4-22 and TW4-24 after these wells were converted to nitrate pumping wells are attributable to westward migration of chloroform from the vicinity of TW4-20 toward these wells. The increase in concentration at TW4-8 from non-detect to 100 μ g/L in the first quarter of 2014 (and to 191 μ g/L this quarter) is likely related to reduced dilution. As will be discussed in Section 4.2.3, the chloroform concentration in TW4-6 increased from 260 μ g/L last quarter, to 723 μ g/L this quarter. This change is likely related to both reduced dilution and more westward flow induced by nitrate pumping.

TW4-6 is located immediately south and cross- to downgradient of chloroform pumping well TW4-4. Chloroform concentrations at TW4-6 exceeded 70 µg/L between the first quarter of 2009 and the third quarter of 2010, and remained below 70 µg/L between the fourth quarter of 2010 and the second quarter of 2014. Relatively low permeability and relatively small saturated thickness in the vicinity of TW4-6 limit the rate at which chloroform mass can be removed by pumping. However, pumping at more productive upgradient locations such as TW4-4 enhances mass removal and lowers hydraulic gradients, thereby reducing the rate of downgradient chloroform migration and allowing natural attenuation to be more effective. Pumping at TW4-4 was implemented during the first quarter of 2010 to improve capture downgradient of TW4-4 to the extent allowable by the lower productivity conditions present in this area. The beneficial effect of pumping TW4-4 is demonstrated by the net decreases in TW4-6 chloroform concentrations from 1,000 µg/L to 10.3 µg/L, and in TW4-26 from 13 µg/L to 4.2 µg/L, between the initiation of TW4-4 pumping and the second quarter of 2014. Concentrations at these wells decreased substantially even though they do not unambiguously appear to be within the hydraulic capture of TW4-4. As discussed in Section 4.1.1, however, the decrease in the longterm rate of water level rise at TW4-6 since TW4-4 pumping began does suggest that TW4-6 is within the hydraulic influence of TW4-4. Regardless of whether TW4-6 can be demonstrated to be within the hydraulic capture of TW4-4, pumping TW4-4 helps to reduce chloroform migration to TW4-6, TW4-26, and other downgradient locations by the mechanisms discussed above.

Likewise, pumping at other productive upgradient locations has a beneficial impact on downgradient chloroform even if the downgradient chloroform is not completely within the hydraulic capture of the productive upgradient well(s). For example, pumping at MW-26 likely reduced chloroform concentrations at TW4-16 from a maximum of 530 μ g/L in the second quarter of 2004 to less than 70 μ g/L by the fourth quarter of 2005, and maintained concentrations below 70 μ g/L until the second quarter of 2014, even though TW4-16 appears to be just beyond the hydraulic capture of MW-26.

Furthermore, the overall hydraulic capture of the chloroform pumping system is expected to expand as wells TW4-1, TW4-2, and TW4-11 are added to the chloroform pumping network. Operation of these additional wells will be discussed in the next (first quarter, 2015) quarterly report.

Chloroform exceeding 70 μ g/L was detected at recently installed well TW4-29, located south of TW4-27 and east of TW4-26, and generally cross-gradient of TW4-4 and TW4-6 with respect to the groundwater flow directions implied by groundwater elevations in the area. As discussed in Section 4.1.1, this may represent chloroform migrating around the low permeability area defined by TW4-27, TW4-14 and TW4-36. The apparent migration pathway from TW4-4 to TW4-29 is consistent with chloroform exceeding 70 μ g/L detected at recently installed well TW4-33, located between TW4-4 and TW4-29. Chloroform concentrations at TW4-33 that are lower than concentrations at TW4-29, and the likelihood that a pathway exists from TW4-4 to TW4-33 to TW4-29, suggest that concentrations in the vicinity of TW4-33 were likely higher prior to initiation of TW4-4 pumping. TW4-4 pumping is likely to reduce chloroform at both TW4-33 and TW4-29 by cutting off the source. The decrease at TW4-33 is expected to be faster than at TW4-29 because TW4-33 is in closer proximity to TW4-4 pumping. Such behavior is expected by analogy with the decreases in chloroform concentrations at TW4-26 that occurred once TW4-4 pumping began.

Chloroform analytical results from new wells TW4-35 and TW4-36 (to be discussed in Section 4.2.3) demonstrate that chloroform is bounded to the southeast of TW4-29 and to the east of TW4-8.

4.2 Review of Analytical Results

4.2.1 Current Chloroform Isoconcentration Map

Included under Tab J of this Report is a current chloroform isoconcentration map for the Mill site.

4.2.2 Chloroform Concentration Trend Data and Graphs

Attached under Tab K are tables summarizing values for all required parameters, chloride, nitrate/nitrite, carbon tetrachloride, chloroform, chloromethane, and methylene chloride, for each well over time.

Attached under Tab L are graphs showing chloroform concentration trends in each monitor well over time.

4.2.3 Interpretation of Analytical Data

Comparing the chloroform analytical results to those of the previous quarter, as summarized in the table included under Tab K, the following observations can be made:

- a) Chloroform concentrations have increased by more than 20% in the following wells compared to last quarter: TW4-1, TW4-5, TW4-6, TW4-8, TW4-9, TW4-19, TW4-20, and TW4-26;
- b) Chloroform concentrations decreased by more than 20% in the following wells compared to last quarter: MW-26 and TW4-24;
- c) Chloroform concentrations have remained within 20% in the following wells compared to last quarter: MW-4, TW4-2, TW4-4, TW4-7, TW4-10, TW4-11, TW4-16, TW4-18, TW4-21, TW4-22, TW4-29, and TW4-33;
- d) Chloroform concentrations have remained non-detect in the following wells: MW-32, TW4-3, TW4-12, TW4-13, TW4-23, TW4-25, TW4-27, TW4-28, TW4-30, TW4-31, TW4-32, TW4-34, TW4-35, and TW4-36; and
- e) Chloroform increased from non-detect to approximately 1.7 µg/L in TW4-14.

As indicated, chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported for the wells during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Wells MW-26, TW4-1, TW4-5, TW4-6, TW4-8, TW4-9, TW4-19, TW4-20, TW4-24, and TW4-26 had changes in concentration greater than 20%. Of these, MW-26, TW4-19 and TW4-20 are chloroform pumping wells, and TW4-24 is a nitrate pumping well. TW4-1 is located adjacent to chloroform pumping well MW-4; TW4-5 and TW4-9 are located near chloroform pumping wells MW-26, TW4-19, and TW4-20; and TW4-6 is located adjacent to chloroform pumping wells and wells adjacent to pumping wells likely result in part from changes in pumping. Well TW4-26 is located just south of the southern chloroform plume boundary. Slight changes in plume boundaries and concentrations at wells near the boundaries are expected to result from changes in pumping.

The chloroform concentration at TW4-9 increased from approximately 47 μ g/L to 101 μ g/L. The plume boundary is now located between TW4-9 and TW4-12 (which is non-detect for chloroform and cross-gradient of TW4-9). The increase is likely the result primarily of reduced dilution from the northern wildlife ponds.

Chloroform pumping well TW4-20 and nitrate pumping well TW4-22 had the highest detected chloroform concentrations of 23,300 and 12,400 μ g/L, respectively. Since the last quarter, the chloroform concentration in TW4-20 increased from 12,400 to 23,300 μ g/L, the concentration in adjacent pumping well TW4-19 increased from 1,410 to 4,310 μ g/L, and the concentration in nearby well TW4-21 increased from 204 to 229 μ g/L. The chloroform concentration in nitrate pumping well TW4-22 remained at 12,400 μ g/L. The chloroform concentration in TW4-24 decreased from 76.3 to 25.8 μ g/L, placing it outside the chloroform plume. TW4-25 remained non-detect for chloroform. TW4-25, located north of TW4-21, continues to bound the chloroform plume to the north.

Chloroform at TW4-8 (which was non-detect from the first quarter of 2008 through the fourth quarter of 2013) increased in concentration from 107 μ g/L to 191 μ g/L. TW4-8 is located immediately east of chloroform pumping well MW-4, where chloroform was detected at a concentration of 1,440 μ g/L. From the first quarter of 2005 through the fourth quarter of 2013, the plume boundary remained between MW-4 and TW4-8. Chloroform at TW4-8 is bounded to the north by TW4-3 (non-detect), to the northeast by TW4-13 (non-detect), to the east by new well TW4-36 (non-detect), and to the southeast by TW4-14 (1.7 μ g/L). The occurrence of elevated chloroform at TW4-8 is likely related to its location along the eastern plume boundary immediately east of pumping well MW-4. Changes in the plume boundary near TW4-8 are expected to result from changes in pumping and reduced dilution resulting from cessation of water delivery to the northern wildlife ponds.

Chloroform at recently installed well TW4-29 (located at the southern tip of the plume, to the east of TW4-26 and to the south of TW4-27) increased from 242 μ g/L to 290 μ g/L. Chloroform at TW4-29 is bounded to the north by TW4-27 (non-detect), to the east by TW4-30 (non-detect), to the southeast by new well TW4-35 (non-detect), to the south by TW4-34 (non-detect), and to the west by TW4-26 (2.5 μ g/L).

Chloroform at recently installed well TW4-33 (located between TW4-4 and TW4-29) also showed an increase in concentration, from 104 μ g/L to 124 μ g/L. Chloroform at TW4-33 is bounded to the north by TW4-14 (1.7 μ g/L), to the east by TW4-27 (non-detect), to the west by TW4-23 (non-detect), and to the south and west by TW4-26 (2.5 μ g/L). This chloroform distribution indicates that the plume southeast of TW4-4 is very narrow compared to more upgradient locations.

As discussed above, the chloroform concentration in TW4-6 increased from approximately 260 μ g/L to 723 μ g/L, and remains within the chloroform plume boundary. Concentrations at TW4-6 exceeded 70 μ g/L from the first quarter of 2009 through the third quarter of 2010, then remained below 70 μ g/L until the third quarter of 2014. Between initiation of pumping of TW4-4 in the first quarter of 2010 and the second quarter of 2014, concentrations at TW4-6 showed a net decrease from 1,000 μ g/L to 10.3 μ g/L. TW4-6, installed in the second quarter of 2000, was the most downgradient temporary perched well prior to installation of temporary well TW4-23 in 2007 and temporary well TW4-26 in the second quarter of 2010. TW4-6 remained outside the chloroform plume between the second quarter of 2000 and the fourth quarter of 2008. TW4-6 likely remained outside the chloroform plume during this time due to a combination of 1) slow rates of downgradient chloroform removal by pumping, and 2) natural attenuation.

The relatively slow rate of chloroform migration in the vicinity of TW4-6 in the past is demonstrated by comparing the rate of increase in chloroform at this well to the rate of increase in the nearest upgradient well TW4-4. Concentrations at TW4-4 increased from non-detect to more than 2,200 μ g/L within only 2 quarters whereas 16 quarters were required for concentrations in TW4-6 to increase from non-detect to only 81 μ g/L. This behavior is consistent with hydraulic tests performed at TW4-4, TW4-6, and TW4-26 during the third quarter of 2010 that indicate a nearly two order of magnitude decrease in permeability south (downgradient) of TW4-4. Chloroform migration rates in the vicinity of well TW4-26 and recently installed wells

TW4-29 and TW4-33 are also expected to be relatively slow due to upgradient pumping and relatively low permeability conditions. By analogy with the decreases in concentration at TW4-6 and TW4-26 that occurred after initiation of TW4-4 pumping, chloroform concentrations at TW4-29 and TW4-33 are expected to eventually trend downward.

Although changes in concentration have occurred in wells within the chloroform plume, the boundaries of the plume have not changed significantly since the last quarter, except for a slight contraction to the west (near TW4-24) and slight expansions to the south-southwest (near TW4-6) and to the east (near TW4-9). Nitrate pumping has caused the boundary of the northern portion of the chloroform plume to migrate to the west toward TW4-24. Over the last four quarters, TW4-24 has been both inside and outside the plume and is again outside the plume. Increased concentrations at TW4-6 and TW4-16 (both of which were within the chloroform plume in the past) since the second quarter of 2014 indicate that the plume boundary has migrated to the southwest and re-incorporated these wells. These changes are likely related to reduced dilution from cessation of water delivery to the northern wildlife ponds and more westerly flow induced by nitrate pumping. However, continued operation of the nitrate pumping system is expected to enhance the capture zone associated with the chloroform pumping system even though nitrate pumping may redistribute chloroform within the plume and cause changes in the plume boundaries. Furthermore, the addition of chloroform wells TW4-1, TW4-2, and TW4-11 to the chloroform pumping network is expected to have a beneficial impact. Operation of these wells will be discussed in the next (first quarter, 2015) quarterly report.

5.0 LONG TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND TW4-4 OPERATIONS REPORT

5.1 Introduction

As a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation.

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the Stipulated Consent Order (the "SCO") dated December 12, 2012. Because wells TW4-22, TW4-24, and TW4-25 are chloroform program wells, they are included in this report and any chloroform removal realized as part of this pumping is calculated and included in the chloroform quarterly reports.

The following information documents the operational activities during the quarter.

5.2 Pump Test Data Collection

The long term pump test for MW-4 was started on April 14, 2003, followed by the start of pumping from TW4-19 on April 30, 2003, from MW-26 on August 8, 2003, from TW4-20 on August 4, 2005, from TW4-4 on January 31, 2010, and from TW4-22, TW4-24, and TW4-25 on January 26, 2013. Personnel from Hydro Geo Chem, Inc. were on site to conduct the first phase

of the pump test and collect the initial two days of monitoring data for MW-4. EFRI personnel have gathered subsequent water level and pumping data.

Analyses of hydraulic parameters and discussions of perched zone hydrogeology near MW-4 has been provided by Hydro Geo Chem in a separate report, dated November 12, 2001, and in the May 26, 2004 *Final Report on the Long Term Pumping Test*.

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, TW4-20, and TW4-4, on a weekly basis, and at selected temporary wells and permanent monitoring wells on a monthly basis.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013, and on a monthly basis for selected temporary wells and permanent monitoring wells.

5.3 Water Level Measurements

Beginning August 16, 2003, the frequency of water level measurements from MW-4, MW-26, and TW4-19 was reduced to weekly. From commencement of pumping TW4-20, and regularly after March 1, 2010 for TW4-4, water levels in these wells have been measured weekly. From commencement of pumping, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. Depth to groundwater in all other chloroform contaminant investigation wells is monitored monthly. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25 and TWN-02 and the monthly Depth to Water monitoring sheets for the chloroform contaminant investigation wells and the selected temporary wells and permanent monitoring wells are included under Tab C. Monthly depth to water measurements for the quarter are recorded in the Field Data Worksheets included under Tab C.

5.4 Pumping Rates and Volumes

Table 2 summarizes the recovered mass of chloroform by well per quarter and historically since the inception of the chloroform recovery program for the active pumping wells. It is important to note that TWN-02 is a nitrate program well and is sampled only for nitrate and chloride as required by the nitrate program. Because TWN-02 is not sampled or analyzed for chloroform, the mass of chloroform recovered is not calculated.

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping

wells is transferred to a holding tank. The water in the holding tank is used in the Mill processes. The pumping rates and volumes for each of the pumping wells are shown in Table 3. Specific operational problems observed with the well or pumping equipment which occurred during the quarter are noted for each well below in Sections 5.4.1 through 5.4.4.

The following two issues were noted as affecting multiple wells in the pumping network and are not repeated under the Section for each well.

On November 23, 2014, the Mill experienced a power outage resulting from high winds (in excess of 60+ mph) in the area. During the power outage all of the pumping wells (MW-04, TW4-04, MW-26, TW4-19, TW4-20, TW4-22, TW4-24, and TW4-25) ceased pumping. Power was partially restored to portions of the Mill on November 23, 2014 and power was fully restored to the entire Mill facility by 7:00 AM November 24, 2014. Pumping of the chloroform wells was restored within 24-hours of discovery. No official notifications to DRC were required as the issue was rectified within 24-hours. DRC was notified by telephone that the issue was resolved within the 24-hour window and no further actions were necessary.

On December 29, 2014, an unscheduled down time occurred which lasted more than 24 hours. The down time was the caused by frozen transfer lines resulting from system/discharge line upgrades. The upgrades were necessary to add three more continuous pumping wells to the chloroform pumping network. The up-sizing of the discharge line required that the old 1-inch lines be excavated while the 4-inch lines were connected. During the excavation the 1-inch lines, which were still connected to the existing pumping system, were exposed to the elements in the open trench. The Mill experienced below freezing temperatures for most of the week prior to December 29, 2014. The down time during construction caused six continuous pumping wells (MW-04, MW-26, TW4-04, TW4-20, TW4-22, and TW4-24) to be off (not pumping) until the completion of construction. Initial notice of this outage was given by telephone to DRC at approximately 1:00 pm on Monday December 29, 2014 (within 24 hours of the discovery). As required by the O&M Plan, a 5-day written notification was also provided to DRC. The 5-day written notification is included in Tab N. The pumps were returned to service On January 9, 2015.

Unless specifically noted below, no additional operational problems were observed with the well or pumping equipment during the quarter.

5.4.1 MW-04

On November 24, 2014, Mill Field Personnel noted that the discharge line from MW-04 was frozen. The frozen discharge line was likely caused by the power outage which began the previous day as noted above. Upon discovery, the discharge line was thawed and full functionality was restored within several hours of discovery. No official notifications to DRC were required as the issue was rectified within 24-hours.

On December 8, 2014 Mill Field Personnel noted that the heat lamp on MW-04 had burned out. No adverse affects were noted due to the nonfunctioning bulb. The bulb was immediately replaced. No official notifications to DRC were required as the issue was rectified within 24-hours.

On December 22, 2014, Mill Field Personnel noted that due to intermittent power issues, the pump timer had lost its settings. The pump timer was reset immediately upon discovery. No official notifications to DRC were required as the issue was rectified within 24-hours.

5.4.2 TW4-04

On November 24, 2014, Mill Field Personnel noted that the discharge line and the flow meter from TW4-04 were frozen. Mill Field Personnel also noted that the flow meter on TW4-04 was cracked. The frozen discharge line and flow meter was likely caused by the power outage which began the previous day as noted above. Upon discovery, the discharge line was thawed and the flow meter was replaced and full functionality was restored within several hours of discovery. No official notifications to DRC were required as the issue was rectified within 24-hours.

5.4.3 MW-26

On November 18, 2014 power was shut down to several pumping wells to upgrade the power pole transformer to accommodate more pumping wells being added to the pumping network. The power was shut down for a few hours during the upgrade. When power was restored the pumping wells were checked and it was noted that the MW-26 pump timer had lost its settings. The pump timer was reset immediately upon discovery. No official notifications to DRC were required as the issue was rectified within 24-hours.

5.4.4 TW4-25

On November 3, 2014 Mill Field Personnel noted that the TW4-25 pump had lost electrical power due to a poor connection. The well was inspected during the monthly depth check on October 29, 2014 and was fully operational at that time. The power loss happened between the monthly depth check and the weekly inspection. Some loss of pumped volume may have occurred as a result of the power loss. The power was immediately restored upon discovery. The pump timer was reset immediately upon discovery. No official notifications to DRC were required as the issue was rectified within 24-hours.

On November 26, 2014, Mill Personnel notified EFRI Corporate Environmental Staff that pumping of TW4-25 had to be stopped to accommodate construction activities in the area associated with the ammonium sulfate concrete cover required under the Nitrate CAP. Pumping was stopped for several hours and no notification to DRC was necessary. On December 1, 2014, Mill Field Personnel requested cessation of pumping in TW4-25 for several days to accommodate re-routing of the discharge lines and electrical lines. The discharge and electrical lines were rerouted as a result of the ammonium sulfate concrete cover. EFRI Corporate Environmental Staff contacted DRC and requested approval for the cessation of pumping. DRC provided verbal approval and requested the incident be documented in this report. Pumping was resumed on December 4, 2014.

On December 8, 2014 during the weekly check, Mill Field Personnel noted that the TW4-25 pump timer had lost its settings. The pump timer was reset immediately upon discovery. No official notifications to DRC were required as the issue was rectified within 24-hours.

5.5 Mass Removed

Chloroform removal was estimated as of the first quarter 2007. Since that estimation, the mass removed by well for each quarter has been compiled in Table 2, which shows the pounds of chloroform that have been removed to date.

5.6 Inspections

All of the required inspections were completed and the inspection forms are included in Tab C.

5.7 Conditions That May Affect Water Levels in Piezometers

No water was added to the any of the wildlife ponds during the quarter.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions required during the current monitoring period.

6.1 Assessment of Previous Quarter's Corrective Actions

The third quarter chloroform report included a corrective action report to address low level nitrate contamination in the rinsate samples. Since the DIFB collected for the third quarter were non-detect, EFRI believed the nitrate present in the rinsate samples was due to laboratory contamination and did not represent actual nitrate contamination. EFRI used an alternative laboratory, CTF, during the quarter, because the Mill's usual contract laboratory, AWAL, suffered a catastrophic fire and could not accept samples.

The corrective action specified in the third quarter report was to resume sending samples to AWAL as soon as their laboratory was able. The fourth quarter samples were sent to AWAL and all rinsate samples were nondetect for all analytes. As such the corrective action is deemed closed and no further actions are required.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The water level contour maps for the fourth quarter, 2014 indicate effective capture of water containing high chloroform concentrations in the vicinity of chloroform pumping wells MW-4, MW-26, TW4-19, and TW4-20. A well-defined capture zone is not clearly evident at chloroform pumping well TW4-4. The capture zone associated with TW4-4 is likely obscured by the low water level at adjacent well TW4-14 and the two orders of magnitude decrease in permeability south of TW4-4. However, between the first quarter of 2010 and last quarter, decreases in chloroform concentrations and the rate of water level rise at TW4-6 (located downgradient of TW4-4) likely resulted from TW4-4 pumping. Cones of depression associated with the nitrate pumping wells became evident as of the fourth quarter, 2013, and capture associated with the nitrate pumping is expected to continue to develop.

Fourth quarter, 2014 chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration greater than 20% occurred in wells MW-26, TW4-1, TW4-5, TW4-6, TW4-8, TW4-9, TW4-19, TW4-20, TW4-24, and TW4-26. Of these, MW-26, TW4-19 and TW4-20 are chloroform pumping wells, and TW4-24 is a nitrate pumping well. TW4-1 is located adjacent to chloroform pumping well MW-4; TW4-5 and TW4-9 are located near chloroform pumping wells MW-26, TW4-19, and TW4-20; and TW4-6 is located adjacent to chloroform pumping wells at both chloroform and nitrate pumping wells and wells adjacent to pumping wells likely result in part from changes in pumping. Well TW4-26 is located just south of the southern chloroform plume boundary. Slight changes in plume boundaries and concentrations at wells near the boundaries are expected to result from changes in pumping. In addition, changes in concentrations at chloroform wells are expected to result from continued operation of nitrate pumping wells as the capture associated with nitrate pumping expands.

The chloroform concentration at TW4-9 increased from approximately 47 μ g/L to 101 μ g/L. The plume boundary is now located between TW4-9 and TW4-12 (which is non-detect for chloroform and cross-gradient of TW4-9). The increase is likely the result primarily of reduced dilution from the northern wildlife ponds.

Chloroform at TW4-8 (which was non-detect from the first quarter of 2008 through the fourth quarter of 2013) increased in concentration from 107 μ g/L to 191 μ g/L. TW4-8 is located immediately east of chloroform pumping well MW-4, where chloroform was detected at a concentration of 1,440 μ g/L. From the first quarter of 2005 through the fourth quarter of 2013, the plume boundary remained between MW-4 and TW4-8. Chloroform at TW4-8 is bounded to the north by TW4-3 (non-detect), to the northeast by TW4-13 (non-detect), to the east by new well TW4-36 (non-detect), and to the southeast by TW4-14 (1.7 μ g/L). The occurrence of elevated chloroform at TW4-8 is likely related to its location along the eastern plume boundary immediately east of pumping well MW-4. Changes in the plume boundary near TW4-8 are expected to result from changes in pumping and reduced dilution resulting from cessation of water delivery to the northern wildlife ponds.

Chloroform pumping well TW4-20 and nitrate pumping well TW4-22 had the highest detected chloroform concentrations of 23,300 and 12,400 μ g/L, respectively. Since the last quarter, the chloroform concentration in TW4-20 increased from 12,400 to 23,300 μ g/L, the concentration in adjacent pumping well TW4-19 increased from 1,410 to 4,310 μ g/L, and the concentration in nearby well TW4-21 increased from 204 to 229 μ g/L. The chloroform concentration in nitrate pumping well TW4-22 remained at 12,400 μ g/L. The chloroform concentration in TW4-24 decreased from 76.3 to 25.8 μ g/L, placing it outside the chloroform plume. TW4-25 remained non-detect for chloroform. TW4-25, located north of TW4-21, continues to bound the chloroform plume to the north.

Chloroform at recently installed well TW4-29 (located at the southern tip of the plume, to the east of TW4-26 and to the south of TW4-27) increased from 242 μ g/L to 290 μ g/L. Chloroform at TW4-29 is bounded to the north by TW4-27 (non-detect), to the east by TW4-30 (non-detect),

to the southeast by new well TW4-35 (non-detect), to the south by TW4-34 (non-detect), and to the west by TW4-26 ($2.5 \mu g/L$).

Chloroform at recently installed well TW4-33 (located between TW4-4 and TW4-29) also showed an increase in concentration, from 104 μ g/L to 124 μ g/L. Chloroform at TW4-33 is bounded to the north by TW4-14 (1.7 μ g/L), to the east by TW4-27 (non-detect), to the west by TW4-23 (non-detect), and to the south and west by TW4-26 (2.5 μ g/L). This chloroform distribution indicates that the plume southeast of TW4-4 is very narrow compared to more upgradient locations.

Although changes in concentration have occurred in wells within the chloroform plume, the boundaries of the plume have not changed significantly since the last quarter, except for a slight contraction to the west (near TW4-24) and slight expansions to the south-southwest (near TW4-6) and to the east (near TW4-9). Nitrate pumping has caused the boundary of the northern portion of the chloroform plume to migrate to the west toward TW4-24. Over the last four quarters. TW4-24 has been both inside and outside the plume and is again outside the plume. Increased concentrations at TW4-6 and TW4-16 (both of which were within the chloroform plume in the past) since the second quarter of 2014 indicate that the plume boundary has migrated to the southwest and re-incorporated these wells. These changes are likely related to reduced dilution from cessation of water delivery to the northern wildlife ponds and more westerly flow induced by nitrate pumping. However, continued operation of the nitrate pumping system is expected to enhance the capture zone associated with the chloroform pumping system even though nitrate pumping may redistribute chloroform within the plume and cause changes in the plume boundaries. Furthermore, the addition of chloroform wells TW4-1, TW4-2, and TW4-11 to the chloroform pumping network is expected to have a beneficial impact. Operation of these wells will be discussed in the next (first quarter, 2015) quarterly report.

Overall, the plume is bounded to the north by TW4-25; to the west and southwest by MW-31, MW-32, TW4-23, TW4-24, and TW4-26; to the east by TW4-3, TW4-5, TW4-12, TW4-13, TW4-14, TW4-18, TW4-27, TW4-30, and TW4-36; to the south by TW4-34; and to the southeast by TW4-35. Because TW4-9 is within the plume this quarter, TW4-12, located east and cross-gradient of TW4-9, replaces TW4-9 as an easterly bounding well.

Continued operation of chloroform pumping wells MW-4, MW-26, TW4-19, and TW4-20 is recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells (such as at TW4-20), helps to reduce downgradient chloroform migration by removing chloroform mass and reducing hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of chloroform pumping well TW4-4 is also recommended to improve capture of chloroform to the extent practical in the southern portion of the plume. The overall decrease in chloroform concentrations at TW4-6 from 1,000 μ g/L in the first quarter of 2010 to 10.3 μ g/L in the second quarter of 2014 is likely related to pumping at TW4-4. The decrease in the long-term rate of water level rise at TW4-6 since TW4-4 pumping began, which suggests that TW4-6 is within the hydraulic influence of TW4-4, is consistent with the decrease in chloroform concentration at TW4-6. Furthermore, because of the influence of TW4-4 pumping, and by analogy with the concentration decreases at TW4-6 and TW4-26 that occurred after initiation of TW4-4 pumping, chloroform concentrations at TW4-29 and TW4-33

are expected to eventually trend downward. Several more quarters of data will be likely be required before trends at these wells can be properly evaluated.

EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds in March, 2012 during discussions with DRC in March 2012 and May 2013. While past recharge from the ponds has helped limit many constituent concentrations within the chloroform and nitrate plumes by dilution, the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound are expected to increase constituent concentrations within the plumes while reducing hydraulic gradients and rates of plume migration. Recent increases in chloroform concentrations at TW4-6, TW4-8, TW4-9, and TW4-16 are likely related in part to reduced dilution.

The net impact of reduced wildlife pond recharge is expected to be beneficial even though it is also expected to result in higher concentrations that will persist until continued mass reduction via pumping and natural attenuation ultimately reduce concentrations. Temporary increases in chloroform concentrations are judged less important than reduced chloroform migration rates. The actual impacts of reduced recharge on concentrations and migration rates will be defined by continued monitoring.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Executive Secretary an electronic copy of the laboratory results for groundwater quality monitoring conducted under the chloroform contaminant investigation during the quarter, in Comma Separated Values format. A copy of the transmittal e-mail is included under Tab M.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. on February 25 2015.

Energy Fuels Resources (USA) Inc.

By:

493 m

Scott A. Bakken Director, Permitting and Environmental Affairs

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Scott A. Bakken Director, Permitting and Environmental Affairs Energy Fuels Resources (USA) Inc.

Tables

Well	Sample Date	Date of Lab Report
MW-04	10/21/2014	11/12/2014
TW4-01	10/29/2014	11/12/2014
TW4-02	10/30/2014	11/12/2014
TW4-03	10/23/2014	11/12/2014
TW4-03R	10/22/2014	11/12/2014
TW4-04	10/21/2014	11/12/2014
TW4-05	10/28/2014	11/12/2014
TW4-06	10/29/2014	11/12/2014
TW4-07	10/30/2014	11/12/2014
TW4-08	10/29/2014	11/12/2014
TW4-09	10/29/2014	11/12/2014
TW4-09R	10/28/2014	11/12/2014
TW4-10	10/30/2014	11/12/2014
TW4-11	10/29/2014	11/12/2014
TW4-12	10/23/2014	11/12/2014
TW4-13	10/23/2014	11/12/2014
TW4-14	10/23/2014	11/12/2014
MW-26	10/21/2014	11/12/2014
TW4-16	10/29/2014	11/12/2014
MW-32	10/29/2014	11/12/2014
TW4-18	10/28/2014	11/12/2014
TW4-19	10/21/2014	11/12/2014
TW4-20	10/21/2014	11/12/2014
TW4-21	10/29/2014	11/12/2014
TW4-22	10/21/2014	11/12/2014
TW4-23	10/28/2014	11/12/2014
TW4-24	10/21/2014	11/12/2014
TW4-25	10/21/2014	11/12/2014
TW4-26	10/28/2014	11/12/2014
TW4-27	10/23/2014	11/12/2014
TW4-28	10/23/2014	11/12/2014
TW4-29	10/29/2014	11/12/2014
TW4-30	10/23/2014	11/12/2014
TW4-31	10/28/2014	11/12/2014
TW4-32	10/23/2014	11/12/2014
TW4-33	10/29/2014	11/12/2014
TW4-34	10/28/2014	11/12/2014
TW4-35	10/28/2014	11/12/2014
TW4-36	10/23/2014	11/12/2014
TW4-60	10/23/2014	11/12/2014
TW4-65	10/23/2014	11/12/2014
TW4-70	10/28/2014	11/12/2014

Table 1: Summary of Well Sampling for the Period

All sample locations were sampled for Chloroform, Carbon Tetrachloride, Chloromethane, Methylene Chloride, Chloride and Nitrogen

Date in parantheses is the date the analytical data package was resubmitted by the laboratory. The package was resubmitted due to a laboratory error in the field sample ID.

"R" following a well number deisgnates a rinsate sample collected prior to purging of the well of that number.

TW4-60 is a DI Field Blank, TW4-65 is a duplicate of TW4-12, and TW4-70 is a duplicate of TW4-05.

Highlighted wells are continuously pumped.

Table 2	
Chloroform Mass Removal Per	Well Per Quarter

Quarter	MW-4 (lbs.)	TW4-15 (MW- 26) (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	Quarter Totals (lbs.)
Q1 2007*	36.8	12.9	150.2	87.0	NA	NA	NA	NA	286.9
Q2 2007	1.4	0.1	0.0	2.5	NA	NA	NA	NA	4.0
Q3 2007	2.2	0.8	2.9	3.1	NA	NA	NA	NA	9.0
Q4 2007	1.7	1.0	3.1	4.8	NA	NA	NA	NA	10.6
Q1 2008	1.7	0.4	4.6	7.2	NA	NA	NA	NA	13.8
Q2 2008	1.3	0.5	3.2	9.9	NA	NA	NA	NA	14.8
Q3 2008	1.2	0.3	15.9	9.3	NA	NA	NA	NA	26.8
Q4 2008	1.3	0.3	20.7	0.4	NA	NA	NA	NA	22.7
Q1 2009	1.7	0.4	4.3	3.6	NA	NA	NA	NA	10.0
Q2 2009	6.8	0.2	3.7	2.8	NA	NA	NA	NA	13.5
Q3 2009	1.5	0.4	11.1	5.5	NA	NA	NA	NA	18.5
Q4 2009	4.8	0.6	17.8	26.1	NA	NA	NA	NA	49.4
Q1 2010	0.9	0.4	2.7	0.4	NA	NA	NA	NA	4.5
Q2 2010	1.5	1.0	6.8	5.9	1.4	NA	NA	NA	16.5
Q3 2010	1.3	1.2	2.0	4.9	1.3	NA	NA	NA	10.6
Q4 2010	1.1	0.5	7.7	7.4	1.2	NA	NA	NA	17.9
Q1 2011	1,1	0.2	12.9	9.6	1.1	NA	NA	NA	24.9
Q2 2011	1.2	0.8	5.3	4.6	1.1	NA	NA	NA	13.1
Q3 2011	1.2	0.4	1.1	4.1	1.2	NA	NA	NA	8.1
Q4 2011	1.2	0.8	2.7	4.8	1.4	NA	NA	NA	10.8
Q1 2012	1.1	0.6	0.8	7.0	1.0	NA	NA	NA	10.6
Q2 2012	1.1	0.7	0.7	6.9	1.1	NA	NA	NA	10.4
Q3 2012	1.1	0.7	1.4	2.4	1.1	NA	NA	NA	6.6
Q4 2012	0.9	0.3	2.0	3.2	0,8	NA	NA	NA	7.2
Q1 2013	0.9	0.4	7.4	2.8	0.7	1.5	0.0	0.0	13.7
Q2 2013	0.9	0.9	3.9	4.4	0.7	2.7	0.0	0.0	13.5
Q3 2013	0.9	0.6	22.3	4.4	0.7	2.1	0.1	0.0	31.1
Q4 2013	0.8	0.3	3.2	2.5	0.7	2.8	0.1	0.0	10.3
Q1 2014	0.8	0.3	1.5	2.8	0.6	2.5	0.2	0.0	8.6
Q2 2014	0.8	0.4	2.0	3.4	0.6	2.5	0.1	0.0	9.9
Q3 2014	0.9	0.4	3.6	1.8	0.8	2.5	0.1	0.0	10.2
Q4 2014	0.8	0.4	7.1	3.2	0.6	2.5	0.04	0.0	14.6
Well Totals	82.9	29.1	334.5	248.6	18.3	19.0	0.64	0.0	733.0

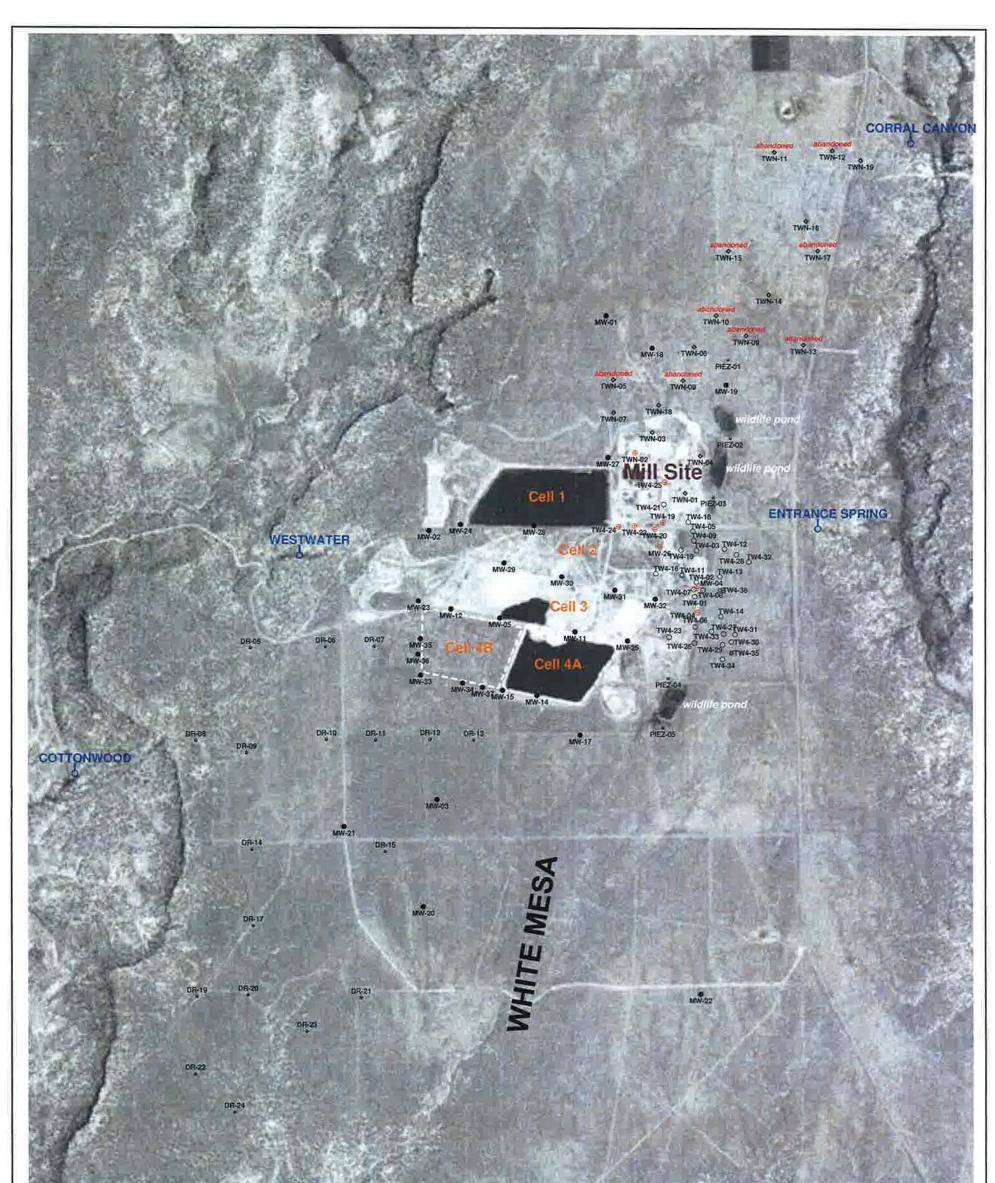
* Q1 2007 represents the cumulative total prior to and including Q1 2007.

	Volume of Water Pumped	
Pumping Well Name	During the Quarter (gals)	Average Pump Rate (gpm)
MW-4	63,093.0	4.39
MW-26	21,875.8	9.74
TW4-4	64,422.6	7.69
TW4-19	198,331.0	10.88
TW4-20	16,341.8	8.25
TW4-22	23,956.9	17.72
TW4-24	178,468.7	17.25
TW4-25	107,416.1	17.34
TWN-2	47,585.6	18.25

Table 3 Pumping Rates and Volumes

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Weekly and Monthly Depth to Water Data


Tab D Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Depth to Water Data

- Tab E Kriged Previous Quarter Groundwater Contour Map
- Tab F Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells
- Tab G Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells
- Tab H Laboratory Analytical Reports
- Tab I Quality Assurance and Data Validation Tables
 - I-1 Field Data QA/QC Evaluation
 - I-2 Holding Time Evaluation
 - I-3 Receipt Temperature Check
 - I-4 Analytical Method Check
 - I-5 Reporting Limit Evaluation
 - I-6 Trip Blank Evaluation
 - I-7 QA/QC Evaluation for Sample Duplicates
 - I-8 QC Control Limits for Analyses and Blanks
 - I-9 Rinsate Check
- Tab J Kriged Current Quarter Chloroform Isoconcentration Map
- Tab K Analyte Concentration Data Over Time
- Tab L Chloroform Concentration Trend Graphs
- Tab M CSV Transmittal Letter

Tab N 5-Day Notice Pursuant to the Chloroform Pumping Well Operations and Maintenance Plan, January 5, 2015

Tab A

Site Plan and Perched Well Locations White Mesa Site

RUIN SPRING **EXPLANATION** TW4-19 perched chloroform or \oplus nitrate pumping well CORRAL SPRINGS ĥ MW-5 perched monitoring well • TW4-12 temporary perched monitoring well 0 1 mile TWN-7 temporary perched nitrate monitoring well PIEZ-1 perched piezometer • WHITE MESA SITE PLAN SHOWING LOCATIONS OF **HYDRO** TW4-35 temporary perched monitoring well installed May, 2014 PERCHED WELLS AND PIEZOMETERS GEO ₩ CHEM, INC. **RUIN SPRING** APPROVED DATE REFERENCE IGURE A-1 H:/718000/nov14/Uwelloc0914.srf 6 seep or spring

Tab B

Order of Sampling and Field Data Worksheets

Chloroform Well Water Levels Depth Well Sample time **Rinsate date/time** level TW4-03R 10/22/14 1008 ND 141 TW4-03 10/25/14 0709 TW4-12 10/23/14 0719 ND 101.5 107 TW4-28 12/23/14 0726 ND TW4-32 10/23/14 0734 ND 115.1 TW4-13 10/23/14 0740 ND 102.5 TW4-14 10/23/14 0746 ND 93 TW4-36 10/23/14 07.55 ND 99 ND 96 TW4-27 10/29/14 0802 TW4-30 10/23/14 0X08 ND 92.5 106 - TW4-31 10/28/14 0808 ND - TW4-34 10/28/14 0815 ND 97.2 - TW4-35 10/28/14 0822 ND 87.5 - TW4-23 10/28/14 08:30 ND 114 132.5 Bladder pump -MW-32 -10/29/14 02157 1320 ND TW4-25 10/21/14 1252 134.8 Cont. Pumping ND - TW4-26 10/28/14 0836 86 1.3 - TW4-05 10/28/14 08.45 12 120 - TW4-18 10/28/14 0857 32.8 137.5 10/28/2014 0416 120-TW4-09R -TW4-09 10/29/14 0748 46.9 TW4-24 10/21/14 1305 76.3 112.5 Cont. Pumping -TW4-33 10/24/19 0757 87.9 104 -TW4-08 10/24/14 0804 107 125 -TW4-21 10/29/14 0813 204 121 -TW4-29 10/21/14 0824 93.5 242 -TW4-06 10/29/19 0833 97.5 260 - TW4-16 10/29114 0840 371 142 - TW4-11 10/34/14 0907 719 100 - TW4-01 10/29/14 09/3 845 110 - TW4-07 10/30/4 0654 857 120 - TW4-10 10/30/H 0703 1060 111 TW4-04 10/21/14 1341 1320 112 Cont. Pumping TW4-19 10/21/14 1415 1410 125 Cont. Pumping

Order of Contamination for 4th Quarter 2014 Chloroform Purging Event

(

MW-04 10/21/14 1335 1490 MW-26 10/21/14 1328 2120 - TW4-02 10/30/14 3170 0712 TW4-22 10/21/14 12400 1313 TW4-20 10/21/14 12400 1322 TW4-60 D.I. Blank 10/23/14 0830 Duplicate 10/23/14 0719 TW4-65 -TW4-70 Duplicate 10/28/14 0845 Comments:

Date:

124 Cont. Pumping

122.5 Cont. Pumping

113.5 Cont. Pumping

106 Cont. Pumping

120

Name:

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction						
	chloroform 2014					
Location (well name): MW-04	and initials: Tanner Holliday/77					
Field Sample ID MW-04_10212014						
Date and Time for Purging 10/21/2014 and	d Sampling (if different)					
Well Purging Equip Used: E pump or D bailer	Well Pump (if other than Bennet)					
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event MW-ZL					
pH Buffer 7.0 7,0 p	H Buffer 4.0 4.0					
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 124.00					
Depth to Water Before Purging 72.44 Casing	g Volume (V) $4''$ Well: 0 (.653h)					
	3" Well: 18,92. (.367h)					
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)					
Time 1334 Gal. Purged O	Time Gal. Purged					
Conductance 2000 pH 6,63	Conductance pH					
Temp. °C	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					
Time Gal. Purged	Time Gal. Purged					
Conductance pH	Conductance pH					
Temp. °C	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					

Volume of Water Purged	0	gallon(s)
Pumping Rate Calculation		

Flow Rate (Q), in gpm. S/60 = 4.3

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ż		3x40 ml		D9	HCL	M	
Nutrients	DÍ		100 ml		Y	H2SO4	M	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologies			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	LZA		Sample volume		D			V
Type and Quantity of Preservative:								
Comment	Comment See instruction							
Arrived on site at 1331 Tanner and Garrin present to collect samples Samples collected at 1335 Water was clear Left site at 1336 Continuous pumping well								

Time to evacuate two casing volumes (2V)

8.80

AWAL

0

0

T = 2V/Q =

MW-04 10-21-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction						
Description of Sampling Event: 4Th Quarter 2014	Chloroform					
Location (well name): TW4-01	and initials: Tanner Holliday MH					
Field Sample ID						
Date and Time for Purging 10/28/2014 and	Sampling (if different) 10/29/2014					
Well Purging Equip Used: Dump or D bailer V	Vell Pump (if other than Bennet)					
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event Twy-11					
pH Buffer 7.0 7.0 pH	H Buffer 4.0					
Specific Conductance 4000 µMHOS/ cm	Well Depth(0.01ft): 110,00					
Depth to Water Before Purging 67.70 Casing	Volume (V) 4" Well: 27.62 (.653h) (.653h) (.27.62) (.653h) (.27.62) (.27.					
	3" Well: 6 (.367h)					
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)					
Time 1525 Gal. Purged 33	Time 1526 Gal. Purged 44					
Conductance Z130 pH 5.98	Conductance Z1Z8 pH 5.95					
Temp. °C	Тетр. °С <u>14.96</u>					
Redox Potential Eh (mV)	Redox Potential Eh (mV) Z69					
Turbidity (NTU)	Turbidity (NTU)					
Time 1527 Gal. Purged 55	Time 1528 Gal. Purged 66					
Conductance 2128 pH 5.94	Conductance 2.130 pH 5.94					
Temp. °C [14.98]	Temp. °C 14.97					
Redox Potential Eh (mV) 268						
	Redox Potential Eh (mV)					

Volume of Water Purged	66] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 11.0 $T = 2V/Q =$ 5.02								
Number of casing volumes	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	sevacuated	0				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL	-			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	ک ل		3x40 ml		Ŕ	HCL	۲ ا	
Nutrients	ð		100 ml		Ď	H2SO4	Ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ť		Sample volume		Ŋ			M
Chloride	с.					If preservative is used Type and Quantity of		ve:
Final Depth 106.87 Sample Time 0913								
Comment						Jee See	mon ucu0.	
Arrived on site at 1520) Tanne	r and G	farrin present for	pura	e. fu	rae began at	1522	

Purged well for a total of 6 minutes, water was murky with a brown coloration. Purge ended at 1528 Left site at 1531 Arrived on site at 0910 Tanner and Garrin present to collect samples. Depth to water was 67.90 samples bailed at 0913 Left site at 0915

TW4-01 10-28-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET H	NIUM MILL See instruction
Description of Sampling Event:	A
Location (well name): TW4-0Z	and initials: Tanner Holliday/TH
Field Sample ID TW4-02_10302014	
Date and Time for Purging $10/29/2019$ and	Sampling (if different) 10/30/2014
Well Purging Equip Used: D pump or bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chlorotorm Prev. N	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	H Buffer 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 120.00
Depth to Water Before Purging 68,10 Casing	g Volume (V) 4" Well: 33.89 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 10°
Time TO47 Gal. Purged 55	Time Gal. Purged
Conductance 3886 pH 6.7	Conductance pH
Temp. °C 14.65	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	
5	Turbidity (NTU)
Time 071Z Gal. Purged	Turbidity (NTU) Time 0713 Gal. Purged 0
Time 071Z Gal. Purged Conductance 3586 pH	
Time One Gai. Fulged	Time 0713 Gal. Purged 0
Conductance 3586 pH 649	Time 0713 Gal. Purged 0 Conductance 3610 pH 6.52
Conductance 3586 pH 649 Temp. °C 13.70 13.70	Time 0713 Gal. Purged 0 Conductance 3610 pH 6.52 Temp. °C 13,79

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged	55		gallon(s)			د		
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0								
Number of casing volumes	evacuated	d (if other	than two)	1.62				
If well evacuated to dryness	, number	of gallons	evacuated	55				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preservat	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	N		3x40 ml		12	HCL	128	
Nutrients	ĽŹ		100 ml			H2SO4	E	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	۲ <u>۵</u>		Sample volume		Ø			Ø
Chloride						If preservative is used		
						Type and Quantity of	Preservativ	ve:
Final Depth 116,97 Sample Time 0712								
Comment See instruction								
Comment Arrived on site at 1039 Tanner and Garrin present for purge. Purge began at 1042. Purged well for a total of 5 minutes. Purged well dry! Purge ended at 1047. Left site at 1050								
Arrived on site at a water was 68,22)707 Sam	Tanner ples bo	and Garrin p ailed at 0712	resent L	to .	collect sample site at 071	rs. De 14	pth to

TW4-02 10-29-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET F	NIUM MILL See instruction
Description of Sampling Event: 4th Quarter Chlor	
Location (well name): TW4-03	and initials:
Field Sample ID Twy-03-10232014	
Date and Time for Purging 10/22/2014 and	Sampling (if different) 10/23/2014
Well Purging Equip Used: Dpump or bailer W	Vell Pump (if other than Bennet) Grund fas
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	H Buffer 4.0
Specific Conductance μ MHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 54.77 Casing	g Volume (V) 4" Well: 56,30 (.653h) 3" Well: • (.367h)
	5 Well.
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 3°
Time 1039 Gal. Purged 88	Time Gal. Purged
Conductance 1661 pH 6.32	Conductance pH
Temp. °С [4,7]	Temp. °C
Redox Potential Eh (mV) 221	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0709 Gal. Purged 0	Time 0710 Gal. Purged
Conductance 1667 pH 6.15	Conductance 1659 pH 6.17
Тетр. °С <u>14.70</u>	Temp. °C [14.70
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

				110	
Volumo	of	Watar	Durgad	88	
VOIUME	UI.	vy alter	rurgeu	00	

gallon(s)

Pumping Rate Calculation

Flow Ra	te (Q), in gpm.
S/60 =	11.0

Time to evacuate two casing volumes (2V) T = 2V/Q = 10.23

1.56

88

AWAL

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ŭ.		3x40 ml		凶	HCL	X	
Nutrients	1 M		100 ml		۲ ۶	H2SO4	۲ <u>۲</u>	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	M		Sample volume		1 ⁵			M
Final Depth 138.23		Sample T	ime 0709			Type and Quantity of		
Comment See instruction								
Arrived on site at 10 Purged well for a water was clear. Arrived on site at 0 water was 55.66	705	Tanner	and Garrin prese	nt to	colled			

TW4-03 10-22-2014 Do not touch this cell (SheetName)

ATTACHME WHITE MESA URA					
FIELD DATA WORKSHEET	FOR GROUNDWATER				
Description of Sampling Event: 41h Quarter Ch	Sampler Name				
Location (well name): TW4-03R	and initials: Tanner Holliday/TH				
Field Sample ID TWY-03R_10222014					
Date and Time for Purging 10/22/2014 and	nd Sampling (if different)				
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet) Grundfos				
Purging Method Used: 2 casings 3 casings					
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event				
pH Buffer 7.0 7.0	bH Buffer 4.0 4,0				
Specific Conductance [1000] µMHOS/ cm	Well Depth(0.01ft):				
Depth to Water Before Purging D Casing Volume (V) 4" Well: O (.653h)					
	3" Well: O (.367h)				
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)				
Sunny					
Time 1007 Gal. Purged 0	Time Gal. Purged				
Conductance],9 pH 7,30	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				
Time Gal. Purged	Time Gal. Purged				
Conductance pH	Conductance pH				
Temp. °C	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

Volume of Water Purged 150 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 =]].0								
Number of casing volumes of	Number of casing volumes evacuated (if other than two)							
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytical Laboratory if Other Than Energy Labs								
Type of Sample	Sample Taken Sample Vol (indicat if other than as		Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	X		3x40 ml			HCL	123	
Nutrients	Ď		100 ml		X	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	X		Sample volume		D\$			29
Chloride						If preservative is use Type and Quantity of		ve:
Final Depth 6	r	Sample T	ime 100 g	ĺ				
Comment See instruction								
Arrived on site at 09	54 -	anner a	ad Fricin presen	t for	cinse	te		
Right barrent -	L OAEE	Annes M	ad EQ ()			tar		
Minisaic Degan at a	0453	s. iump	Sea SU Gallons	OT SO	ap wa	ler		
and 100 Gallons of Left site at 11	Arrived on site at 0954. Tanner and Garrin present for rinsate. Rinsate began at at 0955. Pumped 50 Gallons of soap water and 100 Gallons of DI water, samples collected at 108							

TW4-03R 10-22-2014 Do not touch this cell (SheetName)

ATTACHME WHITE MESA URA FIELD DATA WORKSHEET	NIUM MILL See instruction
Description of Sampling Event: 4Th Quarter Chl	oroform 2014
Location (well name): TW4-04	and initials: Tanner Holliday /1717
Field Sample ID 164-04-10212014	
Date and Time for Purging 10/21/2014 and	d Sampling (if different)
Well Purging Equip Used: Dump or bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event MW-04
pH Buffer 7.0 7.0 p.	H Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 69.74 Casing	g Volume (V) 4" Well: 6.08: (.653h) 27.59 3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) /g •
Time 1340 Gal. Purged 0	Time Gal. Purged
Conductance 2303 pH 6.69	Conductance pH
Temp. °C 5.55	Temp. °C
Redox Potential Eh (mV) 96	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged O gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 8.0 $T = 2V/Q =$ 4.62 6.89								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	If well evacuated to dryness, number of gallons evacuated							
Name of Certified Analytical Laboratory if Other Than Energy Labs								
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ţ Ţ		3x40 ml		凶	HCL	Γ.	
Nutrients	۲ <u>۲</u>		100 ml		Ľ₽	H2SO4	۲ <u>۲</u>	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	59	D	Sample volume		M			M
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 74.87 Sample Time 1341								
Comment See instruction								
Arrived on site at Samples collected Left site at	d at	1341					y slight	
Continuous pumping well								

TW4-04 10-21-2014 Do not touch this cell (SheetName)

CFENERGY FUELS ATTACHMEN WHITE MESA URA	NIUM MILL See instruction
FIELD DATA WORKSHEET I Description of Sampling Event: 4Th Quarter Chlo	
	Sampler Name
Location (well name): TW4-05	and initials: Tanner Holliday/mit
Field Sample ID 10282014	
Date and Time for Purging 10/27/2014 and	Sampling (if different)
Well Purging Equip Used: Dump or D bailer V	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft); 120.00
Depth to Water Before Purging 63,55 Casing	g Volume (V) 4" Well: 36.86 (.653h)
	3" Well: • (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1422 Gal. Purged 55	Time 1923 Gal. Purged 66
Conductance 1484 pH 6,17	Conductance 1482 pH 6.16
Temp. °C	Temp. °C [15, 44
Redox Potential Eh (mV) 235	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 1929 Gal. Purged 77	Time 1425 Gal. Purged
Conductance 1478 pH 6.17	Conductance 1979 pH 622
Тетр. °С 15.97	Temp. °C
Redox Potential Eh (mV) 235	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU) 74.9

Volume of Water Purged 88 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 = 11.0$ $T = 2V/Q = 6.70$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of SampleSample TakenSample Vol (indicate if other than as					ered	Preservative Type		tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ń		3x40 ml		K	HCL	T	
Nutrients	¥0		100 ml		Ď	H2SO4	10	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	E		Sample volume		と			ъ
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 64.76 Sample Time 0845								
Comment See instruction								
Arrived on site at 141	5 -	Tanner a	and Garrin prese	nt fi	or pu	rge. Purde b.	egan Ai	1917
							U.	
Purged well for a to	tal of	0	minules, wat	er wa.	2 210	- 41		
Purge ended at 1	425	Left	site at 142	7			1	
Arrived on site at	0841	Tanner	- and Garris pr	resent	to co	Nect samples.	Depth	to
Arrived on site at 0841 Tanner and Garris present to collect samples. Depth to water was 63.91 samples bailed at 0845 Left site at 0847								

TW4-05 10-27-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL See instruction
Description of Sampling Event: 4th Quarter Child	proform 2014
Location (well name): Twy-OC	and initials: Tanner Holliday/TH
Field Sample ID TW4-06, 10292019	
Date and Time for Purging 10/28/2014 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 97.50
Depth to Water Before Purging 70.10 Casing	Volume (V) 4" Well: 17.89 (.653h)
	3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 15°
Time 1403 Gal. Purged 25.66	Time Gal. Purged
Conductance 3189 pH 6,41	Conductance pH
Temp. °C 15.14	Temp. °C
Redox Potential Eh (mV) 275	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0833 Gal. Purged 0	Time 0835 Gal. Purged 6
Conductance JISA pH GLD	Conductance 3187 pH 6.69
Temp. °C 13.67	Temp. °C 13.65
Redox Potential Eh (mV)	Temp. °C 13.65 Redox Potential Eh (mV)

Volume of Water Purged

gallon(s)

Time to evacuate two casing volumes (2V)

1.43

25,66

AWAL

T = 2V/Q = 3.25

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 1.0

Number of casing volumes evacuated (if other than two)

75,66

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ď		3x40 ml		E	HCL	Ċ	
Nutrients	b		100 ml		Ď	H2SO4	Ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ď		Sample volume		⋈			凶
Final Depth 94.34		Sample T	Time 0833					_
Comment						C. S.	instructio	
Arrived on site at 13	359 -	Tanner	and Garrin prese	nt for	r pure	e. Purge beg	an at	1461
Arrived on site at 13 Purged well for a was a little dirty of Arrived on site at water was 70.42	total c and mu	of z rky. P	minutes 20 Sec. urge ended at 14	onds. 103. L	Pura	ed well dry! site at 1405	water	,,
Arrived on site at	+ 0829	Tann	er and Garrin p	resent	for	sampling. De	pth t	0
Water Was 70.42	Sample	es bail	ed at 0833 Le	++ 51	te at	0835		

TW4-06 10-28-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET F	NIUM MILL See instruction
Description of Sampling Event: 4Th Quarter Cl	hloroform 2014
Location (well name): TW4-07	and initials: Tanner Holliday /174
Field Sample ID 10302014	
Date and Time for Purging 10/29/2014 and	Sampling (if different)
Well Purging Equip Used: D pump or D bailer W	Vell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event $MW-32$
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 12.0.00
Depth to Water Before Purging 68.60 Casing	g Volume (V) 4" Well: 33.56 (.653h) 3" Well: δ (.367h)
	5 went. 0 (.30711)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 8°
Time 0941 Gal. Purged 66	Time Gal. Purged
Conductance [1599 pH 6.77	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0659 Gal. Purged 0	Time 0655 Gal. Purged 0
Conductance [638 pH 7.04	Conductance 1637 pH 7.01
Temp. °C 14.87	Temp. °C 14.85
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	66		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 11.0			Time to evac T = $2V/Q$ =		casing v	volumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.96				
If well evacuated to dryness	, number	of gallons	evacuated	66				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAI				
Type of Sample	nple Sample Taken Sample Vol (indicate if other than as Filtered Preservative T		Preservative Type	Preservat	ive Added			
	Y	N	specified below)	Y	N		Y	N
VOCs	<u>ک</u>		3x40 ml		Ď	HCL	Ø	
Nutrients	竹		100 ml		M	H2SO4	۲ ۲	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	۲Ó		Sample volume					۲ ۲
Chloride			f			If preservative is used Type and Quantity of		/e:
Final Depth 117,09		Sample T	ime 0654			See	instruction	 1

Comment Arrived on site at 0933. Tanner and Garrin present for purge. Purge began at 0935 Purged well for a total of 6 minutes. Purged well dry. Water was clear Purge ended at 0941. Left site at 0943 Arrived on site at 0650 Tanner and Garrin present to collect samples. Depth to Water was 69.61 Samples bailed at 0654 Left site at 0656

TW4-07 10-29-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4th Quarter Chlo	roform 2014						
Location (well name): TW4-08	and initials: Tanner Holliday/TH						
Field Sample ID TW4-08_10292014							
Date and Time for Purging 10/28/2014 and	Sampling (if different) 10/29/2014						
Well Purging Equip Used: Dump or bailer W	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event $-\pi \omega 4 - 33$						
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4,0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 125,00						
Depth to Water Before Purging 66.80 Casing	Volume (V) 4" Well: 38.00 (.653h) 3" Well: 0 (.367h)						
	5 wen: 0 (.307h)						
Weather Cond. Sungy	Ext'l Amb. Temp. °C (prior sampling event)						
Damig							
Time 1033 Gal. Purged 44	Time 1034 Gal. Purged 55						
Conductance 4128 pH 6.30	Conductance 4090 pH 6.30						
Temp. °C	Тетр. °С]14,97						
Redox Potential Eh (mV) ZZO	Redox Potential Eh (mV) 188						
Turbidity (NTU)	Turbidity (NTU)						
Time 1035 Gal. Purged 66	Time 1034 Gal. Purged 77						
Conductance 4053 pH 6.31	Conductance 4016 pH 6.31						
Temp. °C 14.97	Temp. °C 14.99						
Redox Potential Eh (mV)	Redox Potential Eh (mV) 178						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	77] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 11.0 $T = 2V/Q =$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	-	e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	X		3x40 ml		M	HCL	₩.	
Nutrients	DÍ.		100 ml		D2	H2SO4	₽ 2	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	2		Sample volume		120			
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 74.79 Sample Time 0804								
Comment See instruction								
Acrived on site at 10	27	Tanner	and Garrin pres	ent fo	r pur	ge. Purae be	aan at	1029
Arrived on site at 1027 Tanner and Garrin present for purge. Purge began at 1029 Purged well for a total of 7 minutes water was clear. Purge ended at 1036 Left site at 1040								
Arrived on site at 0801 Tanner and Garrin present to collect samples. Depth to Water was 67.30 samples bailed at 0804 Leff site at 0806								

TW4-08 10-28-2014 Do not touch this cell (SheetName)

1

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction								
Description of Sampling Event: 4Th Quarter C	hloroform 2014							
Location (well name): TW4-09 Sampler Name and initials: Tanner Holliday/177								
Field Sample ID TW4-09_10292014								
Date and Time for Purging 10/28/2014 and	d Sampling (if different) 10/29/2014							
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)							
Purging Method Used: 12 casings 3 casings								
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-09R							
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0							
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 120.00							
Depth to Water Before Purging 61.65 Casing	g Volume (V) 4" Well: 38.10 (.653h) 3" Well: 0 (.367h)							
	5 men. 0 (.50m)							
Weather Cond. Sunzy	Ext'l Amb. Temp. °C (prior sampling event)							
Santig								
Time 0939 Gal. Purged 55	Time 0940 Gal. Purged 66							
Conductance 2385 pH 6.30	Conductance 2386 pH 6.30							
Temp. °C [4,89	Тетр. °С [14.89							
Redox Potential Eh (mV) 343	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU) 6.8							
Time 094 Gal. Purged 77	Time 0942 Gal. Purged 88							
Conductance Z389 pH 6.30	Conductance Z389 pH 6.30							
Temp. °C 14.90	Тетр. °С [14,90]							
Redox Potential Eh (mV) 391	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

Volume of Water Purged	88	
------------------------	----	--

gallon(s)

Time to evacuate two casing volumes (2V)

T = 2V/Q = 6.92

0

0

AWAL

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 11.0

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml		129	HCL	X	
Nutrients	D'A		100 ml		×	H2SO4	M	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	123		Sample volume		D3			23
Final Depth GH.27		Sample T	Time 0748	l				
Comment						- 34	instructio	
Arrived on site at Purged Well for a f Left site at 094 Arrived on site at 0 water was 61.72								

TW4-09 10-28-2014 Do not touch this cell (SheetName)

ATTACHME WHITE MESA URA FIELD DATA WORKSHEET	NIUM MILL See instruction
Description of Sampling Event: 4Th Quarter Ch	
Location (well name): TW4-09R	and initials:
Field Sample ID TW4-09R_10282014	
Date and Time for Purging 10/28/2019 and	d Sampling (if different)
Well Purging Equip Used: D pump or bailer	Well Pump (if other than Bennet) Grundfos
Purging Method Used: D 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-18
pH Buffer 7.0 7.0 p	H Buffer 4.0 4.0 -18
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging O Casin	g Volume (V) 4" Well: 0 (.653h)
	3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Sunny	
Time 0915 Gal. Purged 132	Time Gal. Purged
Conductance 10.8 pH 5.99	Conductance pH
Temp. °C 10, 42	Temp. °C
Redox Potential Eh (mV) 453	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	150] gallon(s)					
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 11.0 $T = 2V/Q =$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated O								
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filte		Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	۲ X I		3x40 ml		۶	HCL	Ā	
Nutrients	_ ₽		100 ml		X	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	αĴ		Sample volume		X			ß
Chloride						If preservative is user Type and Quantity of		.ve:
Final Depth 0		Sample T	ime 0916]				
Comment See instruction								

TW4-09R 10-28-2014 Do not touch this cell (SheetName)

ENERGY FUELS	NIUM MILL See instruction
	oroform 2014
	Sampler Name
Location (well name): TW4-10	and initials: Tanner Holliday/777
Field Sample ID 704-10_10302014	
Date and Time for Purging 10/29/2014 and	Sampling (if different) 10/30/2014
Well Purging Equip Used: D pump or D bailer W	Vell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. N	Well Sampled in Sampling Event TW4-07
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4,0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 111.00
Depth to Water Before Purging 61.42 Casing	Volume (V) 4" Well: 32.37 (.653h) 3" Well: 0 (.367h)
	5 weil. 0 (.507ii)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 1005 Gal. Purged 47.66	Time Gal. Purged
Conductance 2723 pH 5,83	Conductance pH
Temp. °C 14.94	Temp. °C
Redox Potential Eh (mV) 249	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0703 Gal. Purged 0	Time 0704 Gal. Purged 0
Conductance Z454 pH 6.35	Conductance 2503 pH 6.3
Temp. °C []3.99	Тетр. °С Щ, ОЧ
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged

gall

47.66

gallon(s)

Time to evacuate two casing volumes (2V)

1.47

47.66

AWAL

T = 2V/Q = 5.88

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 11.0

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml		2	HCL	X	
Nutrients	凶		100 ml		Z	H2SO4	M	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	È		Sample volume		₫ 2			D3
Final Depth 108,35		Sample T	ime 0703			If preservative is used Type and Quantity of		
Comment						1.620	instructio	
Arrived on site at 095 Purged well for a Purge ended at 1006 Arrived on site at 00 Water was 61.47								

TW4-10 10-29-2014 Do not touch this cell (SheetName)

ATTACHME WHITE MESA URA EVEL D. DATA WORKSUEET	NIUM MILL See instruction
Description of Sampling Event:	
Location (well name): Tw4-11	and initials:
Field Sample ID TW4-1L10292014	
Date and Time for Purging 10/28/2014 an	d Sampling (if different) 10/29/2014
Well Purging Equip Used: Dump or bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	1
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 p	H Buffer 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 100,00
Depth to Water Before Purging GO, 19	g Volume (V) 4" Well: 25.99 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 1458 Gal. Purged 22	Time 1459 Gal. Purged 33
Conductance 1720 pH 6.30	Conductance 1720 pH 6.30
Temp. °C	Temp. °C 14,60
Redox Potential Eh (mV) 245	Redox Potential Eh (mV) 244
Turbidity (NTU)	Turbidity (NTU) 8,7
Time Gal. Purged 44	Time ISO1 Gal. Purged 55
Conductance 1720 pH 6.3	Conductance 1721 pH 6,30
Тетр. °С <u>14.58</u>	Temp. °C 14.59
Redox Potential Eh (mV) 244	Redox Potential Eh (mV) Z43
Turbidity (NTU)	Turbidity (NTU) 8.8

Volume of Water Purged	55] gallon(s)					
Flow Rate (Q), in gpm. S/60 = 11.0			Time to evac T = $2V/Q$ =		the second se	olumes (2V)		
Number of casing volumes e	evacuated	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	sevacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type		tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	×.		3x40 ml		M	HCL		
Nutrients	ď		100 ml		ъ	H2SO4	Ľ	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	西		Sample volume		Ł			ť
Chloride						If preservative is use Type and Quantity of		ve:
Final Depth 96,25		Sample T	ime 0907]				
Comment See instruction								
Arrived on site at 145	4 7.	inner an	d Garrin present	for p	urge.	Purae beagi	r at	1456
Purged well for a	111	C-	minuter wa	terin		JJ		
Purge ended at 150))	l of 5	site at 1504	ici wi		lear		
Arrived on site at				tto	colleg	t samples f	Jooth -	to
Water was 61.20 f								
water was 61.20 D Samples bailed at 0907 Left site at 0909								

TW4-11 10-28-2014 Do not touch this cell (SheetName)

ATTACHME WHITE MESA URA	NIUM MILL See instruction
FIELD DATA WORKSHEET I Description of Sampling Event:	
Location (well name): Tw4-1Z	and initials: Tanner Holliday/TH
Field Sample ID TW4-12_10232014	
Date and Time for Purging 10/22/2014 and	Sampling (if different) 10/23/2014
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-03
pH Buffer 7.0 7,0 pl	H Buffer 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 101,50
Depth to Water Before Purging 43.78 Casing	g Volume (V) 4" Well: 37.69 (.653h) 3" Well: 0 (.367h)
	3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1110 Gal. Purged 55	Time IIII Gal. Purged 66
Conductance 1307 pH 6.60	Conductance 1307 pH 6.67
Temp. °C	Тетр. °С [14.40
Redox Potential Eh (mV)	Redox Potential Eh (mV) [19건
Turbidity (NTU)	Turbidity (NTU)
Time IIIZ Gal. Purged 77	Time 1113 Gal. Purged 88
Conductance 130C pH 6,62	Conductance T306 pH 6.67
Temp. °C [14,9/	Тетр. °С [14.93
Redox Potential Eh (mV) 「パン	Redox Potential Eh (mV) [194
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged <u>88</u> gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 = 11.0$ $T = 2V/Q = 6.85$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL	•			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	Ν		Y	N
VOCs	IX (3x40 ml		凹	HCL	Ø	
Nutrients	٦ <u>د</u>		100 ml			H2SO4	19	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv,		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	YEI		Sample volume		西			楂
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 97,13 Sample Time 0719								
Comment See instruction								
Arrived on site at	102	Tann	er and Garrin pre	sent -	for p	urge. Picae	heran	at
1105. Purged well Purge ended at 111	For 3 L	a tota eft s	1 of 8 minutes ite at 1115	, wat	er w	as clear	Degun	4
Arrived on site at 0715 Tanner and Garrin present to collect samples. Depth to water was 43,85 samples build at 0719 Left site at 0721								

TW4-12 10-22-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET H	NIUM MILL See instruction						
Description of Sampling Event: 4th Quarter Ch							
Location (well name): Tw4-13	and initials: Tanner Halliday 774						
Field Sample ID 764-13_10232014							
Date and Time for Purging 10/22/2014 and	Sampling (if different)						
Well Purging Equip Used: Dump or D bailer V	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings	-						
Sampling Event Quarterly Chlorotorm Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7.0 pH	H Buffer 4.0 Ч.О						
Specific Conductance [1000] µMHOS/ cm	Well Depth(0.01ft): 102.50						
Depth to Water Before Purging 48.86 Casing Volume (V) 4" Well: 35.02 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 18						
Time 1340 Gal. Purged 49,50	Time Gal. Purged						
Conductance 1864 pH 6.48	Conductance pH						
Temp. °C 15,10	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU) 8.7	Turbidity (NTU)						
Time Gal. Purged 0	Time Gal. Purged 0						
Conductance 1829 pH 6,83	Conductance 1840 pH 6,81						
Тетр. °С ТЗ.Ч5	Тетр. °С 13.47						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Before	After						

Volume of Water Purged 49,56 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ I_{10} $T = 2V/Q =$ $G.36$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	evacuated	49.50				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as		ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ň		3x40 ml		M	HCL	Ž	
Nutrients	ď		100 ml		Ď	H2SO4	Ž	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	內		Sample volume		K			М
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 99.27 Sample Time 0734 O740 See instruction								
Comment Arrived on site at 1332 Tanner and Garrin present for purge. Purge began at 1335 Purged well for a total of 4 minutes and 30 seconds. Purged well dry. water was clear. Purge Ended at 1340. Left site at 1343								
Arrived on site at 0737 Tanner and Garrin present to collect samples. Depth to Water Was 49.90 49.10 Samples bailed at 0734 Left site at 0736 0742								

TW4-13 10-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4th Quarter Chi	loroform Z014						
Location (well name): TW4-14	and initials:						
Field Sample ID Twy - 14_ 10232014]						
Date and Time for Purging 10/22/2014 and	Sampling (if different) 10/23/2014						
Well Purging Equip Used: Dump or bailer W	Cell Pump (if other than Bennet) Grund fos						
Purging Method Used: 2 casings 3 casings	ſ						
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event Twy-13						
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 93,00						
Depth to Water Before Purging §2.78 Casing Volume (V) 4" Well: 6.67 (.653h) 3" Well: 6 (.367h)							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1406 Gal. Purged 8.25	Time Gal. Purged						
Conductance 4804 pH 6.23	Conductance pH						
Temp. °C 15,87	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU) 5.3	Turbidity (NTU)						
Time 0746 Gal. Purged 0	Time 0747 Gal. Purged 0						
Conductance 4681 pH 6.81	Conductance 4697 pH 6,79						
Temp. °C 13.87	Temp. °C 13,90						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Before	After						

Volume of Water Purged	8.25	gallon(s)
Pumping Rate Calculation		

Flow Rate (Q), in gpm. S/60 = 11.0 Time to evacuate two casing volumes (2V) T = 2V/Q = 1.21

1.23

8.25

AWAL

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	×		3x40 ml		M	HCL	M	
Nutrients	Ъ		100 ml		ð	H2SO4	Ň	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	۲D		Sample volume		۲ <u>e</u> l			楂
Type and Quantity of Preservative: Final Depth 90.36 Sample Time 0746 See instruction								
Comment Arrived on site at 1403 Tanner and Garrin present for purge. Purge began at 1405 Purged Well for a total of 45 seconds. Purged well dry! Purge ended at 1406 Water was clear. Left site at 1408 Arrived on site at 0743 Tanner and Garrin present to collect samples. Depth to water Was 83.12 samples bailed at 0746 Left site at 0748								

TW4-14 10-22-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL See instruction
	proform ZO14
Location (well name): Mw-26	and initials: Tanner Holliday/TH
Field Sample ID MW-26_10212014	
Date and Time for Purging 10/21/2014 and	Sampling (if different)
Well Purging Equip Used: D pump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-20
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4,0
Specific Conductance μ MHOS/ cm	Well Depth(0.01ft): 122.50
Depth to Water Before Purging 71.60 Casing	Volume (V) 4" Well: 33.23 (.653h)
	3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1327 Gal. Purged	Time Gal. Purged
Conductance 3526 pH 6.37	Conductance pH
Temp. °C 15.18	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged		0	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 = 9.6$ $T = 2V/Q = 6.92$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness	, number	of gallons	sevacuated	0				
Name of Certified Analytics	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	-	e Taken	Sample Vol (indicate if other than as		ered	Preservative Type		tive Added
Voc	Y	N	specified below)	Y	N	IIOI	Y M	<u>N</u>
VOCs	Ľ Z		3x40 ml			HCL H2SO4	×	
Nutrients			100 ml 250 ml			HNO3		
Heavy Metals All Other Non Radiologics			250 ml			No Preserv,		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	ň		Sample volume		<u>ک</u>			2
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 89,97 Sample Time 1328								
See instruction								
Arrived on site at 1324 Tanner and Garrin present to collect samples								
samples collected a								
Left site at	1330							
C	-0n7	tinuo	us pumpin	g W	e]]			

MW-26 10-21-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA							
FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 4th Quarter Ch							
Location (well name): TW4-16	and initials: Tanner Holliday/TH						
Field Sample ID							
Date and Time for Purging 10/28/2014 and	Sampling (if different) 10/24/2014						
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event						
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0						
Specific Conductance μ MHOS/ cm	Well Depth(0.01ft): 142.00						
Depth to Water Before Purging 66.00 Casing	Volume (V) 4" Well: 49.62 (.653h)						
	3" Well: 0 (.367h)						
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)						
weather cond. Sunny							
Time 1432 Gal. Purged 77	Time 7433 Gal. Purged 88						
Time 1432 Gal. Purged 77 Conductance 3979 pH 6,24							
	Time 7433 Gal. Purged 88						
Conductance 3979 pH 6,24	Time 7933 Gal. Purged 88 Conductance 3975 pH G.23						
Conductance 3979 pH 6,24 Temp. °C 14.90	Time 7433 Gal. Purged 88 Conductance 3975 pH G.23 Temp. °C 19.89						
Conductance 3979 pH 6,24 Temp. °C 19.90 Redox Potential Eh (mV) 259	Time 7933 Gal. Purged 88 Conductance 3975 pH G.23 Temp. °C 19.89 Redox Potential Eh (mV) 259						
Conductance $\boxed{3979}$ pH $\boxed{6,24}$ Temp. °C $\boxed{14.90}$ Redox Potential Eh (mV) $\boxed{259}$ Turbidity (NTU) $\boxed{12.1}$	Time 7933 Gal. Purged 88 Conductance 3975 pH 6.23 Temp. °C 19.89 Redox Potential Eh (mV) 259 Turbidity (NTU) 12.7						
Conductance 3979 pH 6,24 Temp. °C 19.90 Redox Potential Eh (mV) 759 Turbidity (NTU) 12. Time 1439 Gal. Purged	Time 7933 Gal. Purged 88 Conductance 3975 pH $G.23$ Temp. °C 19.89 Redox Potential Eh (mV) 259 Turbidity (NTU) 12.7 Time 1935 Gal. PurgedTime 1935 Gal. PurgedConductance 3969 pHGal. Purged 100 Conductance 3969 pHGal. Purged 100 Conductance 3969 pHGal. Purged 100						
Conductance 3979 pH $6,Z4$ Temp. °C 19.90 Redox Potential Eh (mV) 7.59 Turbidity (NTU) 12.1 Time 1439 Gal. PurgedGal. Purged 49 Conductance 3972 pH 6.23	Time 7933 Gal. Purged 88 Conductance 3975 pH $G.23$ Temp. °C 19.89 Redox Potential Eh (mV) 259 Turbidity (NTU) 12.7 Time 1935 Gal. PurgedTime 1935 Gal. PurgedConductance 3969 pH $G.23$						

Volume of Water Purged 110 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 1.0 $T = 2V/Q =$ 9.02								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytic	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	M		3x40 ml		Ľ	HCL	ď	
Nutrients	Č		100 ml		Ľ	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		Ď			۲Ŷ
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 137.12]	Sample T	ime OSHO					
Comment See instruction								
Arrived on site at 14	Z3 T	anner a	of Gassin preser	+ for	Dura	e Purse her	an at	1425
Purged well for a t water was clear.	otal o Lef	F 10 F site	minutes. Pu at 1438	rge e	inded	at 1435		
Arrived on site at a	2837 -	Tanner a	and Garrin prese	nt to	collec	+ samples. Di	epth to	water
was 66.15 samples bailed at 0840 Left site at 0842								

TW4-16 10-28-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4th Quarter Chlorotorm 2014							
Location (well name): MW-32 Sampler Name and initials: Tanner Holliday/TH							
Field Sample ID MW-32_10292014							
Date and Time for Purging 0/29/2019 and Sampling (if different)							
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet)						
Purging Method Used: 12 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event						
pH Buffer 7.0 7,0 pH	H Buffer 4.0 4.0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 132.50						
Depth to Water Before Purging 76,23 Casing	Volume (V) 4" Well: 36.74 (.653h)						
	3" Well: 0 (.367h)						
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 5°						
CTEAT							
Time 317 Gal. Purged 77.46	Time 1318 Gal. Purged 77.68						
Conductance 378 pH 6, 19	Conductance 3780 pH 6,18						
Тетр. °С [4.64	Тетр. °С 14.64						
Redox Potential Eh (mV) 106	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time 1319 Gal. Purged 77.90	Time 320 Gal. Purged 78,12						
Conductance 3783 pH 6.17	Conductance 3783 pH 6.5						
Temp. °C 14.62	Temp. °C 14.65						
Redox Potential Eh (mV)	Redox Potential Eh (mV) 101						
Turbidity (NTU)	Turbidity (NTU) 6						

Volume of Water Purged 78,12

gallon(s)

____ б

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = .217 Time to evacuate two casing volumes (2V) T = 2V/Q = 338.65

0

0

AWAL

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	N		3x40 ml		D2	HCL	X	
Nutrients	Ň		100 ml		D ⁴	H2SO4	X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	N		Sample volume		应			
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth Sample Time								
Comment							instructio	
Arrived on site at 0717 Tanner and Garrin present for purge and sampling event. Purge began at 0720 Purged well for a total of 360 minutes. Purge ended and samples collected at 1320 water was mostly clear. Left site at 1325								

MW-32 10-29-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4Th Quarter Chloroform 2014							
Location (well name): TW4-18 Sampler Name and initials: Tanner Holliday /17							
Field Sample ID TWY-18_10282014							
Date and Time for Purging 10/27/2014 and	Sampling (if different) 10/28/2014						
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet) Grund fos						
Purging Method Used: D 2 casings 3 casings	·						
Sampling Event Quarter & Chloroform Prev. V	Vell Sampled in Sampling Event Tw4-05						
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 137.50						
Depth to Water Before Purging 64.65 Casing	Volume (V) $4''$ Well: 47.57 (.653h)						
	3" Well: • (.367h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1454 Gal. Purged 77	Time 1455 Gal. Purged 88						
Conductance 1495 pH 6.16	Conductance 150.6 pH 6.15						
Temp. °C 15.50	Temp. °C [15.52						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU) 30						
Time 456 Gal. Purged 99	Time 457 Gal. Purged 110						
Conductance 1478 pH 6.15	Conductance 1463 pH 6.15						
Temp. °C [15.5Z	Temp. °C 15,52						
Redox Potential Eh (mV) 253	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	110] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 11.0 $T = 2V/Q =$ 8.64								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	۲ <u>۵</u>		3x40 ml		<u>ک</u>	HCL	Ľ	
Nutrients	<u>کا</u>		100 ml		ŕ	H2SO4	Ы	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	ħ		Sample volume		Č			M
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 65.00 Sample Time 0857								
Comment See instruction								

TW4-18 10-27-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4Th Quarterly Quarter Chloroform 2014							
Location (well name); TW4-19 Sampler Name and initials: Tanner Holliday/TH							
Field Sample ID Twy-19-10212014							
Date and Time for Purging $10/21/2019$ and Sampling (if different) \mathcal{MA}							
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-04						
pH Buffer 7.0 7.0 pl	H Buffer 4.0 Ч.0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 125.00						
Depth to Water Before Purging 68,20 Casing	g Volume (V) 4" Well: 37.09 (.653h)						
	3" Well: 0 (.367h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Tartly Cloudy							
Time 1919 Gal. Purged O	Time Gal. Purged						
Conductance Z929 pH G .44	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged	0] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ $I \cdot O$ $T = 2V/Q =$ $G \cdot T = 2V/Q =$ $G \cdot T = 2V/Q =$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWA	L			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	ative Added
	Y	N	specified below)	Y	N	_	Y	N
VOCs	۲ <u>۶</u>		3x40 ml		M	HCL	28	
Nutrients	<u>ک</u>		100 ml		129	H2SO4	Ø	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	لکرا		Sample volume		Ň			
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 74,99 Sample Time 1415								
Comment See instruction								
Arrived on site at	1410	1	anner and Gassing	n pres	bent	to collect s	ample:	5
Samples collected	l at	1415	water was	Clear	-			
Left site at	1418							
Continuous Pumping Well								

TW4-19 10-21-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4th Quarter Chloroform 2014							
Location (well name): Twy-zo	and initials:						
Field Sample ID Tw4-20_10212014							
Date and Time for Purging 10/21/2014 and	d Sampling (if different)						
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4,0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 2 106.00 106.00						
Depth to Water Before Purging 69,08 Casing Volume (V) 4" Well: 24,10 (.653h)							
	3" Well: o (.367h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) しんし						
Time 1321 Gal. Purged O	Time Gal. Purged						
Conductance L1162 pH 6.05	Conductance pH						
Temp. °C 16.03	Temp. °C						
Redox Potential Eh (mV) 142	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

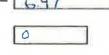
Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged O gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 8.0 $T = 2V/Q =$ $G_{10}OZ$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sample Taken Sample Vol (indicate if other than as		if other than as	Filtered		Preservative Type	Preservat	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	X		3x40 ml			HCL	Ľ ≱	
Nutrients	D		100 ml		Ø	H2SO4	Ż	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø	Ö	Sample volume		⊠			53
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth 74,23 Sample Time 1322								
Comment See instruction								
Arrived on site at	1317	Tan	ner and Garcin s	resent	to	collect sample		
Suppler Martal A	- 137	7				Sumple.	2	
Samples collected at		۷.	water was cl	car				
Left site at 13	24							-
Co	Continuous Pumping Well							

TW4-20 10-21-2014 Do not touch this cell (SheetName)

Mill - Groundwater Discharge Permit
Groundwater Monitoring Quality Assurance Plan (QAP)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET F	NIUM MILL See instruction						
Description of Sampling Event: 4Th Quarter Chi	erotorm 2014						
Location (well name): TW4-Z1	and initials: Tanner Holl day (TH						
Field Sample ID TW4-21_10292014							
Date and Time for Purging 10/28/2014 and	Sampling (if different)						
Well Purging Equip Used: D pump or bailer W	/ell Pump (if other than Bennet) Grund fos						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-08							
pH Buffer 7.0 7.0 pH Buffer 4.0 40							
Specific Conductance 1000 µMHOS/ cm Well Depth(0.01ft): 121.00							
Depth to Water Before Purging 66, 46 Casing Volume (V) 4" Well: 35.61 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1307 Gal. Purged 55	Time 1308 Gal. Purged 66						
Conductance 4077 pH 6.42	Conductance 4090 pH 6.42						
Temp. °C 1.0.2.6	Temp. °C						
Redox Potential Eh (mV) 252	Redox Potential Eh (mV) Z52						
Turbidity (NTU)	Turbidity (NTU)						
Time 1309 Gal. Purged 77	Time 130 Gal. Purged XX						
Conductance 4045 pH 6.42	Conductance 4091 pH 6.92						
Temp. °C 16.25	Temp. °C [6.25]						
Redox Potential Eh (mV) 251	Redox Potential Eh (mV) 2.50						
Turbidity (NTU)	Turbidity (NTU)						


Mill - Groundwater Discharge Permit Groundwater Moñstoring Quality Assurance Plan (QAP)

Volume	of	Water	Purged
--------	----	-------	--------

gallon(s)

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 11.0 Time to evacuate two casing volumes (2V) T = 2V/Q = [4, 47]

0

AWAL

If well evacuated to dryness, number of gallons evacuated

Number of casing volumes evacuated (if other than two)

Name of Certified Analytical Laboratory if Other Than Energy Labs

88

Type of Sample Sample Taken		e Taken	Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL	12	
Nutrients	ß		100 ml		X	H2SO4	53	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ě		Sample volume		Ø			Ø
Final Depth 74,50]	Sample T	ime 0813			See	instructio	o
Comment	50	-		E D		0 1		
Arrived on site at 12 Purged well for a water was clear.	.59	lanne	r and Garrin prese	ent to	ir pur	ge. turge beg	an at	1302
Purged well for a	total	ot 8	minutes f	urge	ende	d at 1310		
water was clear.			Left site a	キッド	312			
		Tan	ner and Garrin a	presen	+ to	collect samp		
Arrived on site at to water was 66:	0810 35 50	mples	bailed at 081.	3 1	-ett	site al 0815		

6267.48

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
Description of Sampling Event: 4Th Quarter Chlor							
Location (well name): TW4-ZZ Sampler Name and initials: Tanner Holliday/TH							
Field Sample ID Twy-22_10212014							
Date and Time for Purging 10/21/2014 and Sampling (if different)							
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-Z4						
pH Buffer 7.0 7.0 pH	pH Buffer 7.0 7.0 pH Buffer 4.0 4.0						
Specific Conductance μ MHOS/ cm Well Depth(0.01ft): 113.50							
Depth to Water Before Purging 61.20 Casing	Volume (V) 4" Well: 34.15 (.653h)						
	3" Well: 0 (.367h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 18 ⁰						
Tarting Cloud of							
Time 1312 Gal. Purged 0	Time Gal. Purged						
Conductance 5992 pH G.40	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Groundwater Discharge Permit Groundwater Monitoring Quality Assurance F	Plan (QAP)						Date: 06-06	-12 Kev. 7.2 - Err
Volume of Water Purged		0] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 8.0			Time to evac T = $2V/Q$ =		casing v	olumes (2V)		
Number of casing volumes of	evacuate	d (if other	than two)	0				
If well evacuated to dryness	, number	of gallons	evacuated	0				
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sample Laken		Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	1		3x40 ml		N	HCL	X	
Nutrients	X		100 ml		N.	H2SO4	×	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ř.		Sample volume		M			121
Chloride						If preservative is use Type and Quantity of		tive:
Final Depth 84.76		Sample T	ime 1313					
Comment						See	instructio)n

Arrived on site at 1309 Tanner and Garrin present to collect samples Samples were collected at 1313 water was clear Left site at 1315 Continuous Pumping Well

TW4-22 10-21-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL See instruction						
Description of Sampling Event: 4Th Quarter Chlo							
Location (well name): Twy-23	and initials: Tanner Holliday/TH						
Field Sample ID 10282614							
Date and Time for Purging 10/27/2014 and	Sampling (if different) 10/28/2014						
Well Purging Equip Used: Dump or bailer W	Vell Pump (if other than Bennet) Grundfos						
Purging Method Used: 12 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event						
pH Buffer 7.0 7.0 pH	H Buffer 4.0						
Specific Conductance []000 []µMHOS/ cm	Well Depth(0.01ft);						
Depth to Water Before Purging 66.75 Casing Volume (V) 4" Well: 30.85 (.653h)							
	3" Well: 0 (.367h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1377 Gal. Purged 44	Time 1328 Gal. Purged 55						
Conductance 3617 pH 6.01	Conductance 3610 pH 6.01						
Temp. °C 14.35	Temp. °C []4.35						
Redox Potential Eh (mV)	Redox Potential Eh (mV) 106						
Turbidity (NTU)	Turbidity (NTU) 13,0						
Time 329 Gal. Purged 66	Time 7330 Gal. Purged 77						
Conductance 3609 pH 6.05	Conductance 3665 pH 6,10						
Temp. °C 14.37	Temp. °C 14,37						
Redox Potential Eh (mV) 101	Redox Potential Eh (mV) 100						
Turbidity (NTU) 12.8	Turbidity (NTU) 12.5						

Volume of Water Purged	77] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 11.0 $T = 2V/Q =$ 5.60								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytical Laboratory if Other Than Energy Labs								
Type of Sample		e Taken	Sample Vol (indicate if other than as		ered	Preservative Type		ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Ø		3x40 ml		12	HCL	۶	
Nutrients	K		100 ml			H2SO4	<u>۱</u>	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	网		Sample volume		12	-		M
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 86.30]	Sample T	ime 0830]				
Comment								
Comment Arrived on site at 1321 Tanner and Garrin present for purge Purge began at 1323 Purged Well for a total of 7 minutes. Purge ended at 1330 Water was an orange color but slowly cleared throughout purge Left site at 1332 Arrived on site at 0827 Tanner and Garrin present to collect samples. Depth to Water Was 67.00 samples bailed at 0830 Left site at 0832								

TW4-23 10-27-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL See instruction
Description of Sampling Event: 4Th Quarter Chlo	
Location (well name): TW4-24	and initials: Tanner Holliday /TH
Field Sample ID TW4-24_10212014	
Date and Time for Purging 10/21/2014 and	Sampling (if different)
Well Purging Equip Used: Dump or bailer W	/ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	HBuffer 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 112.50
Depth to Water Before Purging 68.42 Casing	Volume (V) 4" Well: 28,78 (.653h) 3" Well: 0 (.367h)
	5 went (.5071)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1304 Gal. Purged 0	Time Gal. Purged
Conductance 8198 pH 6.35	Conductance pH
Temp. °C 15,28	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	D] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 17.0 $T = 2V/Q =$ 3.38								
Number of casing volumes of	evacuated	l (if other	than two)	0				
If well evacuated to dryness	0							
Name of Certified Analytical Laboratory if Other Than Energy Labs								
Type of Sample	Sample Taken Sample Vol (indicate if other than as		Filtered		Preservative Type	Preserva	tive Added	
	Y	N	specified below)	Y	Ν		Y	Ν
VOCs	۲ <u>۲</u>		3x40 ml		Ó	HCL	Ń	
Nutrients	Ň		100 ml		Ď	H2SO4	尥	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	ъ	D	Sample volume		酒			è
Chloride			·			If preservative is used Type and Quantity of		ve:
Final Depth 75,34		Sample T	ime 1305					
Comment						🔀 See	instruction	n
Arrived on site at	1301	Tanner	- and Garrin pro	sent -	to col	lect samples		
Samples collected								
Left site at 13								
L	-onti	innous	; pumping we	:1]				

TW4-24 10-21-2014 Do not touch this cell (SheetName)

ATTACHME WHITE MESA URA FIELD DATA WORKSHEET	NIUM MILL See instruction							
	loroform ZOH							
Location (well name): TW4-25_	and initials: Tanner Holliday Att							
Field Sample ID Twy-25_10212014								
Date and Time for Purging 10/21/2014 and Sampling (if different)								
Well Purging Equip Used: Dump or bailer Well Pump (if other than Bennet)								
Purging Method Used: 2 casings 3 casings								
Sampling Event Quarterly ChloroForm Prev. Well Sampled in Sampling Event ~/A								
pH Buffer 7.0 7.0 p	pH Buffer 7.0 7.0 pH Buffer 4.0 4.0							
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 134,80							
Depth to Water Before Purging 88.50 Casin	g Volume (V) 4" Well: 30.23 (.653h)							
	3" Well: 0 (.367h)							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)							
Tartly Cloudy								
Time 251 Gal. Purged O	Time Gal. Purged							
Conductance 2614 pH 6.35	Conductance pH							
Temp. °C 15,95	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

Volume of Water Purged	0] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = $17, 4$]		Time to evac T = $2V/Q$ =			olumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to drynes	s, numbei	of gallons	s evacuated	0				
Name of Certified Analytic	al Labora	tory if Oth	ner Than Energy Labs	AWAL				
Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	Č		3x40 ml		D3	HCL	X	
Nutrients	DX .		100 ml		X	H2SO4	M	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ď		Sample volume					Ø
Chloride						If preservative is used Type and Quantity of		tive:
Final Depth 94.11]	Sample T	ime 1252]				
Comment						See See	instructio	on

Arrived on site at 1249 Tanner and Garrin present to collect samples. collected samples at 1252 Water Was clear Left site at 1255 Continuous Pumping Well

TW4-25 10-21-2014 Do not touch this cell (SheetName)

CFENERGY FUELS ATTACHMEN WHITE MESA URA	NIUM MILL See instruction						
FIELD DATA WORKSHEET I Description of Sampling Event:							
Location (well name): TWY-z.c	and initials:						
Field Sample ID TW4-26_10282014							
Date and Time for Purging 10/27/2014 and	l Sampling (if different) lo/28/2014						
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet)						
Purging Method Used: D 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event TW4-23							
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0						
Specific Conductance [1000] µMHOS/ cm	Well Depth(0.01ft): 86.00						
Depth to Water Before Purging 64.34 Casing Volume (V) 4" Well: 14.14 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 76°						
Time 1356 Gal. Purged 18.33	Time Gal. Purged						
Conductance 6395 pH 3.62	Conductance pH						
Temp. °C 15.28	Temp. °C						
Redox Potential Eh (mV) 374	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time 0836 Gal. Purged 0	Time 0837 Gal. Purged 0						
Conductance 62.95 pH 4,09	Conductance 6299 pH 4.07						
Тетр. °С []3.46	Temp. °C 13,50						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Before	After						

Volume of Water Purged	18.33	•] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 1.0]		Time to evac T = $2V/Q$ =			olumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	1.29				
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytical Laboratory if Other Than Energy Labs								
Type of Sample	Sample Taken Sample Vol (indicate Filte		ered	Preservative Type	Preserva	tive Added		
	Y	N	specified below)	Y	N		Y	N
VOCs	M M		3x40 ml		Ň	HCL	Ď	
Nutrients	12		100 ml		Ľ	H2SO4	Ľ	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	M		Sample volume		ъ			M
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 83,98	l	Sample T	ime 0836					
Comment						See See		n
Arrived on site at 13.	53 1	inner and	Garrin present for	purge.	Purge	- began at 13	59	
Purged well for a toto Purge ended at 1356.	l of Left	l minute site at	40 Seconds, Pu 1358	ged w	pell dry	y' Water was	clear	1
Arrived on site at 08 was 64.60 Samples	32 Tr. bailed	nner and lat 0.	Garrin present 7 836 Left S	to collite at	ect su t 08:	amples. Depth 38	, to Wa	ter

TW4-26 10-27-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN EVEL D DATA WODUSTLETTE	NIUM MILL See instruction						
FIELD DATA WORKSHEET F Description of Sampling Event:	IOROFORM ZU14						
Location (well name): TW4-27	and initials:						
Field Sample ID TW4-27_ 10232014							
Date and Time for Purging 10/22/2014 and	Sampling (if different)						
Well Purging Equip Used: D pump or bailer W	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly chloroform Prev. V	Vell Sampled in Sampling Event						
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0						
Specific Conductance [000] µMHOS/ cm	Well Depth(0.01ft): 96.00						
Depth to Water Before Purging 80.32 Casing Volume (V) 4" Well: 10.23 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)						
Weather Cond. Partly Cloudy Time 1504 Gal. Purged 11	Ext'l Amb. Temp. °C (prior sampling event) 193 Time Gal. Purged						
Taring Cloudy							
Time 1504 Gal. Purged	Time Gal. Purged						
Time 1504 Gal. Purged 11 Conductance 5399 pH 6.17	Time Gal. Purged Conductance pH						
Taring Cloudy Time 1504 Gal. Purged 11 Conductance 5399 pH 6.17 Temp. °C 15.95	Time Gal. Purged Conductance pH Temp. °C						
Time1504Gal. PurgedConductance 5399 pHGal. PurgedIITemp. °C $15,95$ Redox Potential Eh (mV) 299	Time Gal. Purged Gal. Purged Conductance pH Temp. °C ? Redox Potential Eh (mV)						
Taring CloudyTime1504Gal. PurgedConductance5399 pH Gal. PurgedIITemp. °C15.95Redox Potential Eh (mV)299Turbidity (NTU)15.7	Time Gal. Purged Conductance pH Temp. °C 122 · Redox Potential Eh (mV) 1 Turbidity (NTU) 1						
Time 1504 Gal. Purged II Conductance 5399 pH 6.17 Temp. °C 15.95 Redox Potential Eh (mV) Z99 Turbidity (NTU) 15.7 II Time 0802 Gal. Purged 0	Time Gal. Purged Conductance pH Temp. °C ? Redox Potential Eh (mV)						
Time1504Gal. PurgedConductance 5399 pHGal. Purged0Temp. °C 15.95 Redox Potential Eh (mV) 299 Turbidity (NTU) 15.7 Time 0802 Gal. PurgedConductance 52.63 pHG.S.9	Time Gal. Purged Conductance pH Temp. °C 177. Redox Potential Eh (mV) 1 Turbidity (NTU) Gal. Purged Time 0803 Gal. Purged 0 Conductance 5274 pH 6.52						
Time1504Gal. PurgedConductance 5399 pH6.17Temp. °C $15,95$ Redox Potential Eh (mV) 299 Turbidity (NTU) 15.7 Time 0802 Gal. Purged 0 Conductance 5263 pH 6.59 Temp. °C $13,92$	Time Gal. Purged Conductance pH Temp. °C 12° Redox Potential Eh (mV) 1 Turbidity (NTU) 6.52 Time 0803 Gal. Purged 0 Conductance 5274 pH 6.52 Temp. °C 13.98						

Volume of Water Purged gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = $[1.0]$]		Time to evac T = $2V/Q$ =		casing v	olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.07				
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytical Laboratory if Other Than Energy Labs								
Type of Sample	Sample Taken Sample Vol (indicate if other than as		Filtered		Preservative Type	Preservative Added		
	Y	N	specified below)	Y	N	ļ l	Y	N
VOCs	Ľ		3x40 ml		Ø	HCL	Ď	
Nutrients	র্ব		100 ml		×	H2SO4	Ő	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	M		Sample volume		內			.pg
Chloride						If preservative is used Type and Quantity of		ve:
Final Depth 93.45	l	Sample T	ime 080Z					
Comment						See See	instructio	n
Arrived on site at 15	500 T.	nner an	d Grassin present	for	purge	Purae brac	n at 1	503
Purged well for a 7 water was clear.	otal o Left	f I m site	inute. Rurged we at 1507	11 dry!	Pure	ye ended at 15	оч	
Arrived on site at to water was 80.8	0758	Tanne	r and Garrin pi	resent	to c	ollect sample		epth

TW4-27 10-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction	
Description of Sampling Event: 4Th Quarter Chlorotorm 2014	
Location (well name): Tw4-28 Sampler Name and initials: Tw4-28	
Field Sample ID TW4-28_10232014	
Date and Time for Purging 10/22/2014 and Sampling (if different) 10/23 /2014	
Well Purging Equip Used: Dipump or Dibailer Well Pump (if other than Bennet)	
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. Well Sampled in Sampling Event Twy-12	
pH Buffer 7.0 7.0 pH Buffer 4.0 4,0	
Specific Conductance 1000 μ MHOS/ cm Well Depth(0.01ft): 107.00	
Depth to Water Before Purging 38.25 Casing Volume (V) 4" Well: 49,89 (.653h)	
3" Well: 0 (.367h)	
Weather Cond. Partly Cloudy Ext'l Amb. Temp. °C (prior sampling event) [6°	
Time Gal. Purged 77 Time Gal. Purged	
Conductance 1226 pH G.72 Conductance pH	
Temp. °C [14.83] Temp. °C	
Redox Potential Eh (mV) 206 Redox Potential Eh (mV)	
Turbidity (NTU) 21	
Time 0726 Gal. Purged O Time 0727 Gal. Purged O	
Conductance 1243 pH 6.66 Conductance 1240 pH 6.68	
Temp. °C 13.65 Temp. °C 13.70	
Redox Potential Eh (mV) Redox Potential Eh (mV)	
Turbidity (NTU)	
Before After	

.

Volume of Water Purged 77

gallon(s)

Time to evacuate two casing volumes (2V)

1.71

77

AWAL

T = 2V/Q = 8.16

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 1, O

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	150		3x40 ml		120	HCL	X	
Nutrients	15		100 ml			H2SO4	ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ch ا		Sample volume		ĩ			<u>ک</u>
Final Depth 104.55]	Sample T	'ime 0726					
Comment							instructio	
Arrived on site at Purged well for a to water was mostly Arrived on site at 072 was 38.28 samples	3 -	ere and	Gracia present to	collec	+ san	arge. Purge b ended at 114 aples Depth -	egan a 7 to wat	+ 1140 er

TW4-28 10-22-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET F	NIUM MILL See instruction
	loroform 2014
Location (well name): TW4-29	and initials: Tanner Holliday/17
Field Sample ID TW4-29_ 10292014	
Date and Time for Purging 10/28/2014 and	Sampling (if different) 16/29/2014
Well Purging Equip Used: Dump or bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4,0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 93.50
Depth to Water Before Purging 72,55 Casing	Volume (V) 4" Well: 13.68 (.653h)
	3" Well: <i>o</i> (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 19°
Time 1336 Gal. Purged 16.50	Time Gal. Purged
Conductance 4171 pH 6.46	Conductance pH
Temp. °C 15.23	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0824 Gal. Purged 0	Time 0825 Gal. Purged 0
Conductance 4144 pH 6.68	Conductance 4149 pH 6.65
Temp. °C	Temp. °C 13.97
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	16.5	0] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 1.0]		Time to evac T = $2V/Q$ =		casing v	olumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	1.20				
If well evacuated to dryness	s, number	of gallons	sevacuated	16,50				
Name of Certified Analytics	al Labora	tory if Oth	er Than Energy Labs	AWAI	L			
Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	×		3x40 ml		忆	HCL		
Nutrients	E		100 ml		Ľ	H2SO4	个	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	M		Sample volume		75			12
Chloride						If preservative is use Type and Quantity of		ve:
Final Depth 90.2]	Sample T	ime 0824	ĺ				
Comment						See		n
Arrived on site at 1333	Tanr	ner and	Garrin present for	purge.	Purge	e began at 13	35	
Purged well For a to Purge ended at 1336	ital o. LeA	f 1 m site	inute 30 second at 1339, Water	s. Pur was	ged u	pell dry!		
								1

Arrived on site at 0821, Tanner and Garrin present to collect samples. Depth to water was 72.70 samples bailed at 0824. Left site at 0826

TW4-29 10-28-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL See instruction
Description of Sampling Event: 47h Quarter Chic	
Location (well name): TW4-30	and initials: Tanner Holliday/TH
Field Sample ID TW4-30_10232014	
Date and Time for Purging 10/22/2014 and	Sampling (if different) 10/23/2014
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-27
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 92,50
Depth to Water Before Purging 76,68 Casing	Volume (V) 4" Well: 10.33 (.653h) 3" Well: 0 (.367h)
	5 Wen. (
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1529 Gal. Purged 14,66	Time Gal. Purged
Conductance 4400 pH 4,97	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0808 Gal. Purged 0	Time 0809 Gal. Purged 0
Conductance 4454 pH 5,25	Conductance 4450 pH 5.24
Temp. °C [13.90]	Temp. °C 13.89
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	14.66		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 1.0			Time to evac T = 2V/Q =		casing v	olumes (2V)		
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL	-			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	Ν	specified below)	Y	N		Y	N
VOCs	۲ <u>ا</u>		3x40 ml		Ď	HCL	129	
Nutrients	Ď		100 ml		Ď	H2SO4	Ľ1	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	构		Sample volume		的			x
Chloride						If preservative is used Type and Quantity of		ve:
Final Depth 89,66		Sample T	ime 0808					
Comment						1.01	instruction	
Arrived on site at 1526 Tanner and Garrin present for purge. Rurge began at 1528 Purged well for a total of 1 minute and 20 seconds. Purged well dry. Purge ended at 1529. Water was mostly clear. Left site at 1532 Arrived on site at 0804 Tanner and Garrin present to collect samples. Depth to Water was 76.88 samples bailed at 0808 Left site at 0810								
Water was 16,88	Sam	d card	and at USUS	Le-	1 31	1 A J U810		

TW4-30 10-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction							
	hloroform 2014						
Location (well name): $TW4-31$	and initials:						
Field Sample ID TW4-31_10282017							
Date and Time for Purging 10'27/2019 and	Sampling (if different)						
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet)						
Purging Method Used: 1 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7.0 pl	H Buffer 4.0						
Specific Conductance [1300] µMHOS/ cm	Well Depth(0.01ft): 106.00						
Depth to Water Before Purging 81.57 Casing	g Volume (V) 4" Well: 15.95 (.653h)						
	3" Well: d (.367h)						
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 13'						
Time 1059 Gal. Purged 19.25	Time Gal. Purged						
Conductance 4735 pH 6,38	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time 0808 Gal. Purged 0	Time 0809 Gal. Purged 0						
Conductance 4683 pH 6.53	Conductance 4695 pH 6.52						
Temp. °C 15.05	Temp. °C 15,03						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged	19.25	, ,] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 1.0			Time to evac T = $2V/Q$ =		casing v	rolumes (2V)		
Number of casing volumes of	evacuated	d (if other	than two)	1.20				
If well evacuated to dryness	, number	of gallons	evacuated	19.25				
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	10		3x40 ml		Ď	HCL	ř	
Nutrients	Ø		100 ml		ť	H2SO4	7	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ď		Sample volume		X			Ľ
Chloridc If preservative is used, specify Type and Quantity of Preservative:								
Final Depth 103.41		Sample Ti	ime 0808	l				
Comment						See See	instruction	n
Arrived on site at 101	53 7	anner an	d Garrin present -	for pur	ge. P.	rae began at	1057	
Purged Well For a to Water Was Murky. P.	arge e	inded an	7 1059. Left si	te at	1101,	7	,	
Arr ved on site at c was \$1,80 samples	805 -	Tanner	and Garrin presen	t to c	ollect	samples. Dept	h to w	ater
was 81,80 samples	s baile	ed at c	2808 Left	site	at 08	10		

Do not touch this cell (SheetName) TW4-31 10-27-2014

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction						
Description of Sampling Event: 4Th Quarter Ch	aloroform 2014					
Location (well name): +w4-37	and initials: Tanner Holliday/17H					
Field Sample ID Twy - 32_ 10232014						
Date and Time for Purging 10/22/2014 and	Sampling (if different)					
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet)					
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event $TW4 - 28$					
pH Buffer 7.0 7.0 pH	H Buffer 4.0					
Specific Conductance [1000] µMHOS/ cm	Well Depth(0.01ft): 115,10					
Depth to Water Before Purging 49.95 Casing	g Volume (V) 4" Well: $4 = 4 = 4 = 4$ (.653h) 3" Well: $0 = 4 = 4$ (.653h)					
	3" Well: O (.367h)					
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 18°					
Time 1301 Gal. Purged 55	Time 1307 Gal. Purged 66					
Conductance 7741 pH 3.40	Conductance 7753 pH 338					
Тетр. °С <u>14.80</u>	Temp. °C [14, 78]					
Redox Potential Eh (mV) 399	Redox Potential Eh (mV)					
Turbidity (NTU) 7.9	Turbidity (NTU) 7.4					
Time 1303 Gal. Purged 77	Time 1304 Gal. Purged 88					
Conductance 7760 pH 3.38	Conductance 7786 pH 3.36					
Тетр. °С [14.74	Temp. °C					
Redox Potential Eh (mV) 399	Redox Potential Eh (mV) 399					
Turbidity (NTU)	Turbidity (NTU) 7.9					

Volume of Water Purged	88		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 100			Time to evac T = $2V/Q$ =		casing v	olumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to dryness	If well evacuated to dryness, number of gallons evacuated							
Name of Certified Analytica	al Labora	tory if Oth	ner Than Energy Labs	AWA	L			
Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	X		3x40 ml		Ŋ	HCL		
Nutrients	X		100 ml		X	H2SO4	Ľ	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	凶		Sample volume		X			Ø
Chloride						If preservative is used Type and Quantity of		ve:
Final Depth 73,90		Sample T	ime 0734					
Comment See instruction								
Arrived on site at 1252 Tanner and Garrin present for purge. Purge began at 1256 Purged well for a total of 8 minutes. Water was clear. Purge ended at 1304 Left site at 1306								
Arrived on site at to water was 49.90	0730 Sam	Tanne ples k	r and Garrin provided at 0734	resent Le	to co	ite at 0736	s. De	:pth

TW4-32 10-22-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL					
Description of Sampling Event: 4Th Quarter Ch	loroform 2014					
Location (well name): Twy-33	and initials: Tanner Holliday/TH					
Field Sample ID 704-33_10292014						
Date and Time for Purging 10/28/2014 and	Sampling (if different)					
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet) Grund fos					
Purging Method Used: 2 casings 3 casings						
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-09					
pH Buffer 7.0 7.0 pH	I Buffer 4.0					
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 87,90					
Depth to Water Before Purging 71.10 Casing Volume (V) 4" Well: 10.97 (.653h) 3" Well: 0 (.367h)						
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 9°					
Time 1006 Gal. Purged 11	Time Gal. Purged					
Conductance 4441 pH 6.41	Conductance pH					
Temp. °C 14.63	Temp. °C					
Redox Potential Eh (mV) 322	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					
Time 6757 Gal. Purged 0	Time 07.58 Gal. Purged 0					
Conductance 4297 pH 6.69	Conductance 4:30g pH 6.68					
Temp. °C [4.54]	Temp. °C [14.60]					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					
Before	After					

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged

gallon(s)

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 11.0

Number of casing volumes evacuated (if other than two)

11

If well evacuated to dryness, number of gallons evacuated

1.00

AWAL

Time to evacuate two casing volumes (2V)

T = 2V/Q = 199

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	53		3x40 ml		X	HCL		
Nutrients	X		100 ml		53	H2SO4	M	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	3		Sample volume		Ľ			Ø
Chloride						If preservative is used Type and Quantity of		IVC:
Final Depth 84,77	-	Sample T				2	instructio	
Arrived on site at 10 Purged well for a t Left site at 1008 Arrived on site at water was 71.19	otal 0	I Tanni	minute water w	as cle esent	to	Purge ended a collect sample	+ 1006	
			this cell (SheetName)					

ATTACHMEN WHITE MESA URAN FIELD DATA WORKSHEET F	NIUM MILL See instruction
Description of Sampling Event: 4th Quarter chlor	rotorm 2014
Location (well name): TW4-34	and initials:
Field Sample ID Twy-34_10282014	
Date and Time for Purging 10/27/2014 and	Sampling (if different) 10/28/2014
Well Purging Equip Used: Dpump or D bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 1 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	I Buffer 4.0 Ч.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 97,20
Depth to Water Before Purging 70.25 Casing	Volume (V) 4" Well: 17.59 (.653h) 3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 기식 아
Time 1233 Gal. Purged 27, 50	Time Gal. Purged
Conductance 3820 pH 6.39	Conductance pH
Temp. °C 15,23	Temp. °C
Redox Potential Eh (mV) 28	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time OSLS Gal. Purged O	Time O816 Gal. Purged O
Conductance 3860 pH 6.61	Conductance 3863 pH 6.61
Temp. °C [13,7]	Temp. °C 13.76
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	Atter

Volume of Water Purged	27.50] gallon(s)					
Pumping Rate Calculation	21.00							
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 11.0 $T = 2V/Q =$ 3.19								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated 27.50								
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	٦.		3x40 ml		Ý	HCL		
Nutrients	N		100 ml		Ľ	H2SO4	Ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	۲D		Sample volume		ť			M
Chloride	-					If preservative is use Type and Quantity of		ve:
Final Depth 93,38]	Sample T	ime 0815	ĺ,				
Comment						100 B	instruction	
Accived an site at 172	8 1	anner an	d Garrin present	for pu	rge.	Purge began	at 12	3/
			i l ou c		D	0 9	14	5/
rurged well for a -	Total	ot c	MINUTES SO SE	conas.	lura	ea well dry.		
Arrived on site at 122, Purged well for a - Purge ended at 1233	3. Wa-	ter Wa.	s mostly clear.	Lett	site a	V 2051 F		1
Arrived on site at 08	11 1,	anner ar	nd Garrin prese	nt to	collec	t samples. Di	epth to	o Water
Was 76.46 Samp	oles b	ailed a	+ 0815 Le-	tt s	ite a	T 0817		_

TW4-34 10-27-2014 Do not touch this cell (SheetName)

ATTACHMEN WHITE MESA URA FIELD DATA WORKSHEET H	NIUM MILL See instruction
Description of Sampling Event: 4Th Quarter Ch	
Location (well name): Tw4-35	and initials:
Field Sample ID TW4-35_10282014	
Date and Time for Purging 10/27/2014 and	1 Sampling (if different) 10/28/2014
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event TW4-34
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4 .0
Specific Conductance μ MHOS/ cm	Well Depth(0.01ft): 87.50
Depth to Water Before Purging 74.10 Casing	g Volume (V) 4" Well: 8,75 (.653h)
	3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time IZSA Gal. Purged 11	Time Gal. Purged
Conductance 4352 pH 5.98	Conductance pH
Temp. °C 15.45	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0822 Gal. Purged 0	Time 0823 Gal. Purged d
Conductance 4292 pH 6.28	Conductance [4297 pH 6.29
Temp. °C 13.84	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	η		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 110			Time to evac T = 2V/Q =		casing v	olumes (2V)		
Number of casing volumes	evacuated	d (if other	than two)	1.25				
If well evacuated to dryness	If well evacuated to dryness, number of gallons evacuated							
Name of Certified Analytica	ıl Labora	tory if Oth	er Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs	۲D		3x40 ml		M	HCL	Ľ	
Nutrients	ъ		100 ml		Ó	H2SO4	Õ	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv,		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ċ		Sample volume		乜			۲
Chloride.						If preservative is used Type and Quantity of		ve:
Final Depth 84.10		Sample T	ime OSZZ					
Comment						and the second se	instruction	
Arrived on site at 1256 Tanner and Garrin present for purge. Purge began at 1258 Purged Well for a total of 1 minute. Purged Well dry. Water was mostly clear. Purge ended at 1259. Left site at 1301								
Arrived on site at a water was 74.33	2818 59n	Tanner Aplcs L	and Garrin press miled at 0822	ent to	ft s	ect samples. ite at obzy	Depti	n to

TW4-35 10-27-2014 Do not touch this cell (SheetName)

E ENERGY FUELS	NIUM MILL See instruction						
Description of Sampling Event: 4 Th Quarter Chloroform 2014							
Description of Sampling Event.	Sampler Name						
Location (well name): TW4-36	and initials: Tanner Holliday /TH						
Field Sample ID TW4-36_ 10232014							
Date and Time for Purging 10/22/2014 and	Sampling (if different)						
Well Purging Equip Used: Dump or D bailer V	Vell Pump (if other than Bennet)						
Purging Method Used: D 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7.0 pI	H Buffer 4.0 4.0						
Specific Conductance μ MHOS/ cm	Well Depth(0.01ft): 99.0						
Depth to Water Before Purging 57.25 Casing Volume (V) 4" Well: 27.26 (.653h) 3" Well: 0 (.367h)							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) [19°						
Time 438 Gal. Purged 33	Time Gal. Purged						
Conductance 2578 pH 6.40	Conductance pH						
Temp. °C 15,30	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time 0755 Gal. Purged ø	Time 0756 Gal. Purged σ						
Conductance 2973 pH 6.55	Conductance 2430 pH 6.52						
Temp. °C 13.53	Temp. °C 13,59						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Before	After						

Volume of Water Purged	33
------------------------	----

gallon(s)

Time to evacuate two casing volumes (2V)

T = 2V/Q = 4.45

1.21

33

AWAL

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 11.0

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	Ν		Y	N
VOCs	N		3x40 ml			HCL	M	
Nutrients	É		100 ml		Ъ	H2SO4	Ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	ĸ		Sample volume		t		Π	T
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth 96.75 Sample Time 0755								
Comment		~				1000	instructio	
Arrived on site at 1432 Tanner and Garrin present for purge. Purge began at 1435 Purged well for a total of 3 minutes. Purged well dry. Purge ended at 1438 water was clear. Left site at 1440 Arrived on site at 0751 Tanner and Garrin present to collect samples. Depth to water was 58,20 samples bailed at 0755 Left site at 0757								

TW4-36 10-22-2014 Do not touch this cell (SheetName)

ATTACHME WHITE MESA URA	ENT 1-2 See instruction						
Description of Sampling Event: 4 Th Quarter Chloroform 2014							
Description of Sampling Event: 4 Th Quarter Chlo	Sampler Name						
Location (well name): TW4-60 and initials: Tanner Holliduy/11							
Field Sample ID TW4-60_10232014							
Date and Time for Purging 10/23/2014 an	d Sampling (if different)						
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings							
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7.0 p	버 Buffer 4.0 먹.0						
Specific Conductance µMHOS/ cm	Well Depth(0.01ft):						
Depth to Water Before Purging O	g Volume (V) $4"$ Well: 0 (.653h)						
	3" Well: 0 (.367h)						
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 20°						
Weather Cond. Partly Cloudy							
Time O 629 Gal. Purged Ø	Time Gal. Purged						
Conductance 0.7 pH	Conductance pH						
Temp. °C 20.17 6.30	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged 🛛 👌

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

0

0

0

AWAL

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 0

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sampl	le Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	□		3x40 ml		M	HCL	X	
Nutrients	Γ. Γ		100 ml		Þ	H2SO4	۶Ľ	
Heavy Metals	Ĺ Ó		250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	17/1		Sample volume		Ŕ			图
Chloride Final Depth O		Sample T	ime 0830			If preservative is used Type and Quantity of	· ·	
Comment						la Tan 4		
D	T		Blank					

TW4-60 10-23-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL FIELD DATA WORKSHEET FOR GROUNDWATER							
Description of Sampling Event: 4Th Quarter Chlorotorm 2014							
Location (well name): TW4-65 Sampler Name and initials: Tanner Holliday/TH							
Field Sample ID 7004-65-10232014							
Date and Time for Purging 10/22/2014 and	d Sampling (if different) 10/23/2014						
Well Purging Equip Used: Dump or bailer	Vell Pump (if other than Bennet)						
Purging Method Used: 2 casings 3 casings	·						
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7,0 pl	H Buffer 4.0						
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 101, 50						
Depth to Water Before Purging 43.78 Casing	g Volume (V) 4" Well: 37,69 (.653h)						
	3" Well: 0 (.367h)						
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)						
Weather Cond. Partly Cloudy	· · · · · · · ·						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged

gallon(s)

Time to evacuate two casing volumes (2V)

0

D

AWAL

T = 2V/Q = 6.85

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 11.0

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Labs

Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserv	ative Added
	Y	N	specified below)	Y	N		Y	N
VOCs	¥D		3x40 ml		Ć	HCL	Ď	
Nutrients	M		100 ml		×	H2SO4	Ľ	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	۲Ū		Sample volume		它			M
Chloride If preservative is used, specify Type and Quantity of Preservative: Final Depth 97, 13 Sample Time 0719 Comment See instruction								
Duplicate		oF	TW4-	12				

TW4-65 10-22-2014 Do not touch this cell (SheetName)

ATTACHMENT 1-2 WHITE MESA URANIUM MILL See instruction								
Description of Sampling Event: 4th Quarter Chloroform 2014								
Location (well name): TW4-70 Sampler Name and initials: Tanner Holliday /TH								
Field Sample ID TW4-70_10282014								
Date and Time for Purging 10/27/2014 and	d Sampling (if different) 10/28/2014							
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet) Grund fos							
Purging Method Used: 2 casings 3 casings								
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event							
pH Buffer 7.0 7.0 p.	H Buffer 4.0							
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 120,00							
Depth to Water Before Purging 63,55 Casing	g Volume (V) 4" Well: 36.86 (.653h)							
	3" Well: 0 (.367h)							
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)							
Weather Cond. Partly Cloudy								
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

Volume of Water Purged 88 gallon(s)									
Pumping Rate Calculation									
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 11.0 $T = 2V/Q =$ 6,70									
Number of casing volumes evacuated (if other than two)									
If well evacuated to dryness	If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytica	al Labora	tory if Oth	er Than Energy Labs	AWAL					
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added	
	Y	N	specified below)	Y	N		Y	Ν	
VOCs	Ň		3x40 ml		<u>ک</u>	HCL	×		
Nutrients	۴		100 ml		M	H2SO4	×		
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	Þ		Sample volume		đ			內	
Chloride If preservative is used, specify Type and Quantity of Preservative:									
Final Depth 64.76		Sample T	ime 0845]				_	
Comment						See See	instructio	1	
Duplicate of TW4-05									

TW4-70 10-27-2014 Do not touch this cell (SheetName)

Tab C

Weekly and Monthly Depth to Water Data

Date 10/6/14

Name Garrin, Tanner

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1343	MW-4	71.93	Flow 4.4 Gen	Yes No
			Meter 495345 91	(Yes) No
1339	MW-26	71.20	Flow 10.0 GPM	Yes No
			Meter 459524,81	(Yes) No
1235	TW4-19	67.42	Flow 11.5 GPM	(Yes) No
			Meter 2909727.00	(Yes) No
1336	TW4-20	70.01	Flow 8.8 spin	(Yes) No
			Meter 30251,71	Yes No
1346	TW4-4	69.92	Flow 8.0 Gpm	Yes No
			Meter 441615.30	(Yes) No
1325	TWN-2	27.20	Flow 18.4 GPM	Ves No
			Meter 327178.40	(Yes) No
1333	TW4-22	61-12	Flow 17.6 GPM	Yes No
			Meter 167926.40	(Yes') No
1329	TW4-24	97.02	Flow 17.0 GPM	Yes No
			Meter 1536340.80	Yes No
1320	TW4-25	62.58	Flow 17.4 Gpm	Yes No
			Meter 902667.80	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date	10/13/2014	L	Name Janner Hollig	day Garrin Palmer
				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1453	MW-4	71.25	Flow 43	Yes No
			Meter 501119,43	(Yes) No
1450	MW-26	68.95	Flow 10.0	(Yes) No
			Meter 461517.20	Yes No
1837	TW4-19	GREEK	Flow 11.0	Yes No
1510		75,10	Meter 2434/2000	Yes No
1447	TW4-20	7105	Flow 8,3	YesNo
			Meter 31685.02	Yes No
1457	TW4-4	69.70	Flow 8.0	Yes No
			Meter 4467799	Yes No
1438	TWN-2	26.90	Flow 180	Yes No
			Meter 3308219	Yes No
1444	TW4-22	62.40	Flow 17.0	(Yes) No
			Meter 169767,7	Yes No
1441	TW4-24	69.83	Flow 17,3	Yes No
			Meter 15524261	Yes No
1434	TW4-25	61.37	Flow 16.8	(Yes) No
			Meter 911660B	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date	

10/21/14

Name Garner Palmer / Taner Holliday

System Operational (If no note any problems/corrective actions) Time Well Depth* Comments Yes **MW-4** Flow No 4.4 GPM 1330 72.44 Yes Meter No 507973.20 Yes **MW-26** Flow No 71 9.7 GPM 1.324 71.60 Yes Meter No 463585.70 TW4-19 (Yes) No Flow 68.20 1415 11.0 GPM Meter Yes) No 2991441.00 Yes TW4-20 No Flow 1317 69.08 8.0 GPM Yes) No Meter 33031.08 (res) No TW4-4 Flow 69.74 8.0 GPM 1339 Meter (Yes) No 452554 (Yes) No TWN-2 Flow 27.42 1250 18.2 GPM Yes) No Meter 335187.40 Yes No TW4-22 Flow 61.20 1308 18.0 GPM Yes Meter No 171944.50 68.42 (Yes) No TW4-24 Flow 17.0 GPM 1300 (Yes) Meter No 1570521.10 (Yes) No TW4-25 Flow 17.4 6PM 1247 98.50 (Yes) No Meter 922094.10

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date Jolzalia

Name Garrin Palmer / Tamer Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
0951	MW-4	79.98	Flow 4.4 GPM	Yes No
			Meter 512809.82	(Yes) No
0948	MW-26	72.25	Flow 10.0 GPM	Yes No
-			Meter 464542.36	Yes No
1009	TW4-19	84.46	Flow 11.0 GPM	Yes No
			Meter 2981400.05	(Yes) No
0945	TW4-20	70.12	Flow 8.5 GPM	(Yes) No
			Meter 34119.53	Yes No
0934	TW4-4	70.48	Flow 6.0 GPM	Yes No
			Meter 456679.80	Yes No
0934	TWN-2	28.40	Flow 18-6 GPM	(Yes)No
			Meter 338218.70	Yes No
0942	TW4-22	61-15	Flow 18.0 GPM	(Yes) No
			Meter 173017.50	(Yes') No
0938	TW4-24	68.85	Flow 16.6 GPM	Yes No
			Meter 15840-16.90	Ves No
0930	TW4-25	71,48	Flow 17.3 GPM	(Yes) No
			Meter 929605.00	Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date io	1/29/2014	Monthly Dep	th Chec <u>Name</u>		Iliday / Garrin Palmer
Time	Well	Depth*	Time	Well	Depth*
0939	MW-4	76.12	1247	TWN-1	60.35
0910	TW4-1	67.90	1251	TWN-2	28.40
1040	TW4-2	68.10	1257	TWN-3	37.78
1347	TW4-3	55.02	1254	TWN-4	52.62
1350	TW4-4	69.18	1302	TWN-7	86.60
1346	TW4-5	63.97	1253	TWN-18	59.70
0829	TW4-6	70,42	1259	MW-27	_53.75
0933	TW4-7	68.60	1307	MW-30	75.50
0801	TW4-8	67.30	1310	MW-31	68.37
0745	TW4-9	61.72	1410	TW4-28	38.28
0959	TW4-10	61.42	0821	TW4-29	72.70
0904	TW4-11	61.20	1409	TW4-30	76.80
1409	TW4-12	43.86	1402	TW4-3 1	81.85
1408	TW4-13	49.24	1411_	TW4-32	50.03
1405	TW4-14	82.85	0753	TW4-33	71,19
1346	TW4-15	73.18	1356	TW4-34	70.51
0837	TW4-16	66.15	1358	TW4-35	74.36
0717	TW4-17	76.23	1406_	TW4-36	57.17
1249	TW4-18	64.95			
1440	TW4-19	_69.70	-		
1344	TW4-20	70.07			
0810	TW4-21	66.35	×		
1342	TW4-22	59,95	-		·
1352	TW4-23	67.01			
1340	TW4-24	68.44			
17250	TW4-25	62.80			X
1353	TW4-26	64,59			
1354	TW4-27	80.45			

Comments: (Please note the well number for any comments)

Date III3114

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1429	MW-4	70.28	Flow 4.4 GPM	Yes No
			Meter 518805.84	Yes No
1424	MW-26	73.23	Flow 10.0 GPM	Yes) No
			Meter 466344.11	(Yes) No
150	TW4-19	76.40	Flow 10.5 GPM	Yes No
			Meter 3009557.00	(Yes) No
1420	TW4-20	70.48	Flow 8.2 GPM	(Yes) No
			Meter 35445.08	Yes No
1432	TW4-4	69.70	Flow 7.6 GPM	Yes No
			Meter 461723.00	(Yes) No
1359	TWN-2	28,90	Flow 18.7 GPM	(Yes) No
			Meter 342090-60	(Yes) No
1415	TW4-22	67.90	Flow 18.0 GPM	(Yes) No
			Meter 175580.10	(Yes) No
1410	TW4-24	69.20	Flow 17.4 GPM	(Yes) No
			Meter 1600878.00	(Yes) No
1330	TW4-25	58.50	Flow 18.7 51 18.0 08	n Yes No
			Meter 9325 85.60	Yes No

Operational Problems (Please list well number): <u>TW4-25</u> was found wlock power. Power was restored to pump. well is back to operation.

Corrective Action(s) Taken (Please list well number):

Date	Wuliy		Name Garria Palme	- / Tanner Hollichez
Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1337	MW-4	71.57	Flow 4.4 GPM	Yes) No
			Meter 522792.55	Yes No
1337	MW-26	80.20	Flow 9.8 GPM	Yes No
			Meter 468438.13	Yes No
1223	TW4-19	78.92	Flow 10.0 GRM	(Yes) No
			Meter 3032154.00	Yes No
1334	TW4-20	71.04	Flow 8,3 GPM	(Yes) No
			Meter 36986.17	Yes, No
1340	TW4-4	70.30	Flow 7.7 GPM	(Yes No
			Meter 4674 41.70	(Yes) No
1324	TWN-2	28-40	Flow 15.2 GPM	Yes No
			Meter 346208,70	Yes No
1330	TW4-22	72.95	Flow 18.0 GPM	Yes No
			Meter 177698.30	(Yes) No
1328	TW4-24	107.60	Flow 17.0 GPM	(Yeş No
			Meter 1621203.20	Ves No
1320	TW4-25	62.31	Flow 18.0 GPM	Yes No
			Meter 943773-80	(Yes) No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

Date	11	18	14
Duto	-111	181	14

Name Garrin Palmer / Tamer Holliday

System Operational (If no note

Time	Well	Depth*	Comments	any problems/corrective actions)
1519	MW-4	65.55	Flow 4.4 GPM	Yes No
			Meter 527319.08	(Yes) No
1510	MW-26	71.90	Flow 9.0 GPM	(Yes) No
			Meter 4705 20.56	Yes No
1448	TW4-19	66,44	Flow 10.0 GPM	(Yes) No
			Meter 3052086.02	(Yes) No
1540	TW4-20	70.43	Flow 8.2 Gpm	(Yes) No
			Meter 38140-16	Yes No
1520	TW4-4	69.14	Flow 7.4 GPM	(Yes) No
			Meter 472750.90	Yes No
1459	TWN-2	29.33	Flow 17.8 GPM	Yes No
			Meter 349978.60	Yes No
1506	TW4-22	61.89	Flow 17.1 GPM	Yes No
			Meter 179928.70	Yes No
1503	TW4-24	68.45	Flow 17.4 GPM	(Yes) No
			Meter 1634244.30	(Yes) No
1456	TW4-25	61.43	Flow 17.4 GPM	Yes No
		6	Meter 953479.60	Yes No

Operational Problems (Please list well number): <u>Timer on nw-26 needed to be reset because</u> data Tost when power was turned off to well.

Corrective Action(s) Taken (Please list well number): Reset timer. Well Functioning properly.

Date	11/24/14		Name Garria Palm	or / Tanner Halliday
Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
0930	MW-4	67.80	Flow 4.4 fpm	(Yes) No
			Meter 532314.62	Yes No
0922	MW-26	78.68	Flow 9-8 GPM	(Yes) No
			Meter 471641.23	(Yes) No
0845	TW4-19	72.95	Flow 11.0 spin	Yes No
			Meter 3058396.50	Ves No
0920	TW4-20	69.50	Flow 8.5 GPM	(Yes') No
			Meter 39036.80	(Yes) No
0926	TW4-4	69.10	Flow 8.8 GPM	Yes No
			Meter 476424.80	Yes No
0909	TWN-2	49.60	Flow 18.2 GPM	(Yes No
			Meter 353029, 30	Yes No
0416	TW4-22	61.63	Flow 17.6 GPM	(es No
			Meter 181190.40	(Yes)No
0413	TW4-24	67.72	Flow 17.0 Gem	Ves No
			Meter 1643861.80	(Yes) No
0965	TW4-25	102.42	Flow 17.2 GPM	(Yes)No
			Meter 961325.60	Yes No

Operational Problems (Please list well number): <u>TWY-4, MW-4 discharge lines</u> Found Frozen, Flow meter on TWY-4 Froze and cracked.

Corrective Action(s) Taken (Please list well number): <u>Replaced Flow neter on TW4-4 and</u> <u>un-thawed Frozen discharge lines</u>

-1.1.1		

	M	onthly Dept	th Chec	k Form	
Date ii	25/14		Name	Garrin Paln	rer/Tanner Holliday
<u>Time</u>	Well	Depth*	<u>Time</u>	Well	<u>Depth*</u>
0930	MW-4	68,80	1233	TWN-1	60.46
1256	TW4-1	67.97	0909	TWN-2	29.60
1259	TW4-2	67.55	1241	TWN-3	37.93
1301	TW4-3	55.23	1245	TWN-4	52.70
0926	TW4-4	6990	12.53	TWN-7	86.05
1303	TW4-5	63,98	1248	TWN-18	59.63
1252	TW4-6	70.31	1250	MW-27	53.74
1323	TW4-7	67.24	1259	MW-30	75.41
1317	TW4-8	66.52	1301	MW-31	68.33
1304	TW4-9	61.80	1223	TW4-28	38.41
1306	TW4-10	61.41	1233	TW4-29	72.75
1311	TW4-11	60.41	1240	TW4-30	76.80
1221	TW4-12	44.08	1241	TW4-31	81.78
1226	TW4-13	_ 49.60_	1724	TW4-32	50.20
1229	TW4-14	82.70	1244	TW4-33	71.25
0923	TW4-15	_76.82	1234	TW4-34	70.65
1309	TW4-16	66.19	1238	TW4-35	74.34
1305	TW4-17	76.31	1246	TW4-36	57.24
1236	TW4-18	64.81			·
0850	TW4-19	74.68			
0920	TW4-20	69.60			
1238	TW4-21	65.61			
0916	TW4-22	61.83			
1250	TW4-23	67.25			****
0913	TW4-24	67.72			
0903	TW4-25	70.18			
1248	TW4-26	64.71			
1230	TW4-27	80.47			£

Monthly Denth Check Form

Comments: (Please note the well number for any comments)

* Depth is measured to the nearest 0.01 feet

Date	12	1
	14	

2/2/14

Name Garrin Palmer/Tenner Holliday

System Operational (If no note

Time	Well	Depth*	Comments	any problems/corrective actions)
1230	MW-4	64.49	Flow 4.4 GPM	Yes) No
			Meter 5034671.58	(Yes) No
1227	MW-26	80.61	Flow 9.8 GPM	Yes No
			Meter 473685.54	Yes No
1300	TW4-19	68.49	Flow 11.4 GPM	Yes No
			Meter 3064457.00	(Yes) No
1224	TW4-20	68.80	Flow S.4 GPM	(Yes) No
			Meter 40515.36	Yes No
1233	TW4-4	69.70	Flow 7.8 GPM	Yes No
			Meter 6243.30	(Yes) No
1215	TWN-2	43.98	Flow 18.4 GPM	(Yes) No
			Meter 357655.40	Yes No
1221	TW4-22	61.45	Flow 17.4 GPM	Yes No
			Meter 183393.60	Yes No
1218	TW4-24	67.20	Flow 16.7 6 GPM	(Yes) No
			Meter 1656422.70	(Yes) No
1212	TW4-25	58.70	Flow	Yes No
			Meter 970907.90	Yes No

Operational Problems (Please list well number): <u>Twy-25 will be off watil Thursday the</u> 4th because of construction in the area.

Corrective Action(s) Taken (Please list well number):

Date 12/8/14

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
ALC: POINT PROVING	MW-4	71.45	Flow 4.4 GPM	(Yes) No
			Meter 540913.04	Yes No
1235	MW-26	77.60	Flow 9.8 GRM	Yes No
			Meter 474539.17	Yes No
1310	TW4-19	68.42	Flow 11.0 GPM	Yes) No
			Meter 3069078.00	Yes No
1233	TW4-20	68.27	Flow 8.5 GPM	(Yes) No
			Meter 416970.60	(Yes) No
1242	TW4-4	69.89	Flow 8.2 GPM	Yes No
			Meter 10064.30	(Yes) No
1217	TWN-2	36.62	Flow 18.6 6PM	(Yes) No
			Meter 360472.80	Yes No
1229	TW4-22	61.55	Flow 18.0 GPM	(Yes) No
			Meter 184923.40	(Yes) No
1226	TW4-24	66.82	Flow 17.8 GPM	Yes No
			Meter 1665844.50	Yes No
1211	TW4-25	58.58	Flow 17.2 GPM	Yes No
			Meter 970941,00	(Yes No

Operational Problems (Please list well number): <u>Timer on Tw4-25 lost settings due to</u> being off. Heat lamp bulb went out on Trank MW-4.

Corrective Action(s) Taken (Please list well number): <u>Reset times on TW4-25 and date/fime</u>. <u>Replaced bulb on MW-4</u>.

Date 12/15/14

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
	MW-4	73.18	Flow 4.4 GPM	(Yes) No
			Meter 545485.56	(Yes) No
1426	MW-26	6930	Flow 9.0 GPM	(Yes) No
			Meter 476405.11	(Yes) No
1506 1438	TW4-19	75.92	Flow 11.0 GPM	(Yes) No
			Meter 3074328.00	(Yes) No
1430	TW4-20	63.20	Flow 8.2 Gen	(Yes) No
			Meter 42404.58	(Yes) No
1438	TW4-4	69.87	Flow 8.0 GPM	(Yes) No
			Meter 16410.90	(Yes) No
1417	TWN-2	30.70	Flow 18.2 GPM	Yes No
			Meter 364091.30	(es) No
1426	TW4-22	69.32	Flow 18.1 GPM	Yes No
			Meter 186969.30	(Yes) No
1422	TW4-24	67.40	Flow 17.8 GPM	(Yes No
			Meter 1677079.60	(Yes) No
1410	TW4-25	61.40	Flow 17.4 GPM	Ves No
			Meter 981260.00	Yes No

Operational Problems (Please list well number):

Corrective Action(s) Taken (Please list well number):

* Depth is measured to the nearest 0.01 feet.

Scieose

Date	12/22/14		Name Garrin Palmer,	Tanner Holliday
Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1305	MW-4	64.80	Flow 4.4 Gpm	CYes No
			Meter 549521.45	Ves No
1302	MW-26	71.15	Flow 10.0 Gen	(Yes) No
			Meter 478501.32	(Yes) No
1348	TW4-19	68.14	Flow 11.0 GPM	Yes No
			Meter 3074543.00	Yes No
1316	TW4-20	83.70	Flow 7.4 GPM	Yes No
			Meter 44258.29	Yes No
1310	TW4-4	69.90	Flow 7.6 GPM	(Yes No
			Meter 21498.70	(Yes) No
1251	TWN-2	31.40	Flow 17.2 GPM	(Yes) No
			Meter 367741.10	Yes No
1258	TW4-22	60.73	Flow 17.5 GPM	(Yes No
		1	Meter 188721.30	Yes No
1255	TW4-24	65.30	Flow 17.6 GPM	Yes) No
			Meter 1687955_30	(Yes) No
1248	TW4-25	54.79	Flow 16.8 GPM	(Yes No
			Meter 991253.60	Yes No

Operational Problems (Please list well number):

MW-4 settings were erased.

Corrective Action(s) Taken (Please list well number): Reprogramed well settings

Date	1

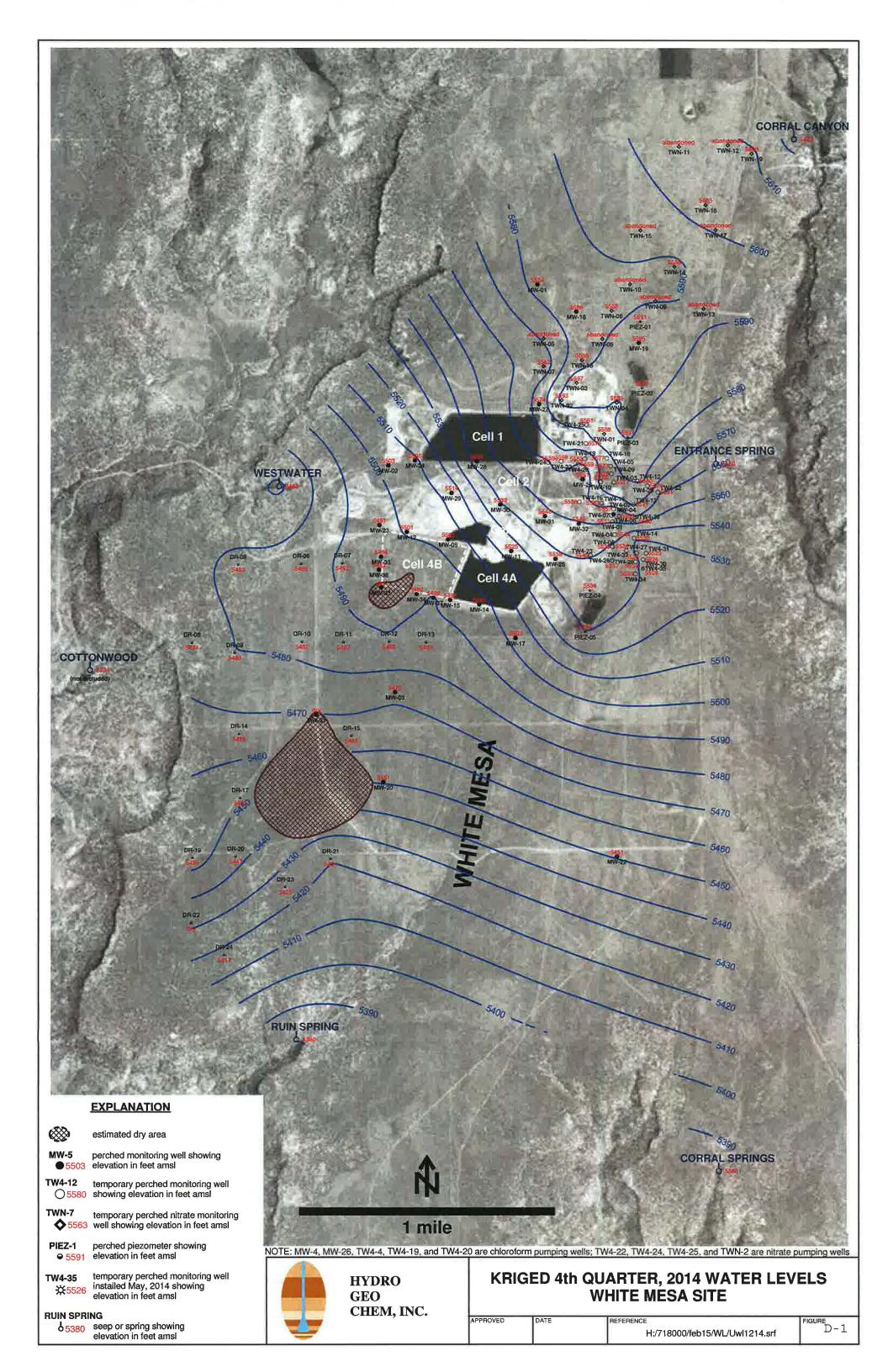
12/29/14

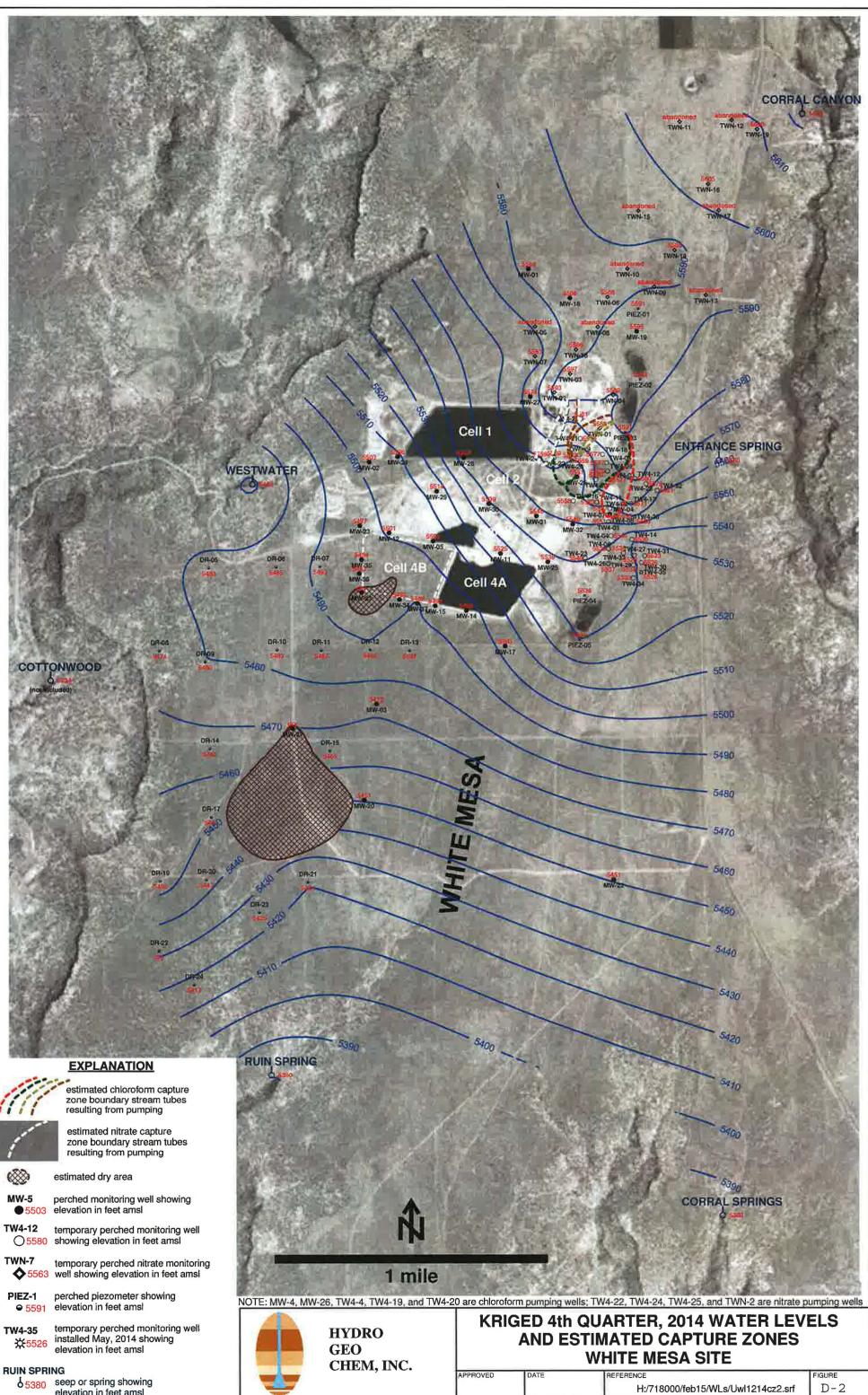
Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1207	MW-4	64.80	Flow	Yes No
			Meter 552582-49	Yes No
1204	MW-26	68.80	Flow	Yes (No')
			Meter 479490.56	Yes No
1401	TW4-19	69.72	Flow 11.0 opn	Yes No
			Meter 3084882.00	Ves No
1200	TW4-20	67.00	Flow 7.9 GPM	Yes No
			Meter 45401.03	(Yes, No
1208	TW4-4	69.02	Flow	Yes No
			Meter 24524.60	Yes No
1148	TWN-2	31.81	Flow 13.8 GPM	(Yes) No
			Meter 371050 20	Yes No
1156	TW4-22	58.80	Flow 18.0 GRM	Yes No
			Meter 190029.40	Yes No
1152	TW4-24	67.89	Flow 17.7 GPM	Yes No
			Meter 1698779.90	Yes No
1144	TW4-25	62.74	Flow 17.2 GPM	(Yes) No
			Meter 1000986.70	(Yes) No

Operational Problems (Please list well number): lines are frozen

MW-4, MW-26, TW4-4 discharge

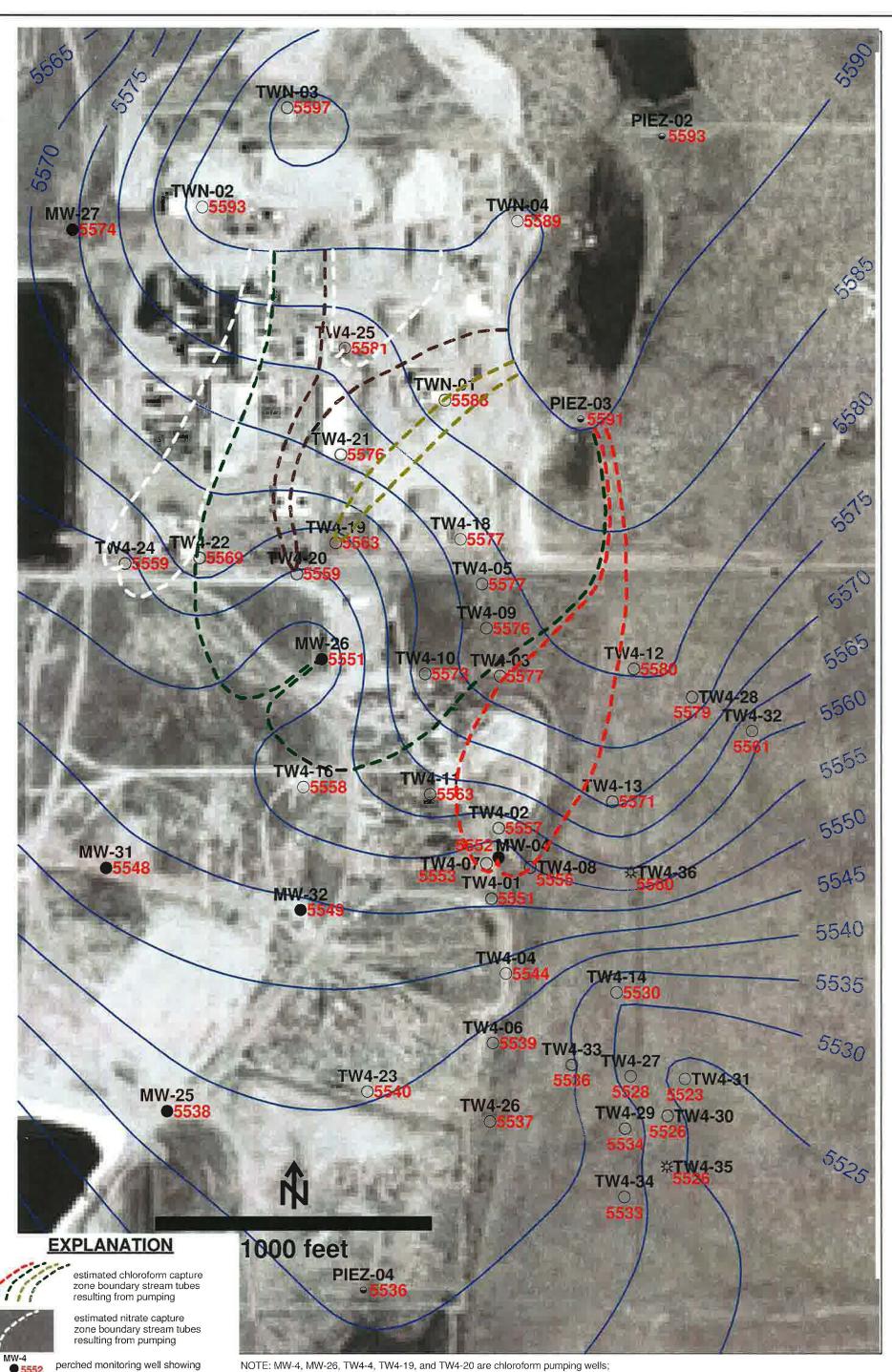

Corrective Action(s) Taken (Please list well number): Kathy wand spoke with the flage dobe and wells will be started when wells are connected to new discharge line


Tab D

Kriged Current Quarter Groundwater Contour Map, Details Map, and Depth to Water Summary

NAME: Garrin Palmer, Tanner Holliday DATE: 12/17/14

TIME	WELL	Depth to Water (ft.)	TIME	WELL	Depth to Water (ft.)	TIME	WELL	Depth to Water (ft.)	TIME	WELL	Depth to Water (ft.)
1250	MW-1	64.06	927	MW-4	70.25	1238	PIEZ-1	64.10	NA	DR-1	ABANDON
1029	MW-2	109.69	931	TW4-1	67.86	1233	PIEZ-2	36.15	NA	DR-2	ABANDON
725	MW-3	82.71	929	TW4-2	67.65	1231	PIEZ-3	47.36	1340	DR-5	83.00
726	MW-3A	84.65	924	TW4-3	54.83	1004	PIEZ-4	55.12	1343	DR-6	94.35
1024	MW-5	106.10	932	TW4-4	69.80	1002	PIEZ-5	54.17	738	DR-7	92.03
1213	MW-11	86.20	921	TW4-5	63.26	1304	TWN-1	60.35	1353	DR-8	51.20
1021	MW-12	108.21	934	TW4-6	70.07	1303	TWN-2	34.03	1349	DR-9	86.41
1010	MW-14	103.15	927	TW4-7	68.45	1259	TWN-3	37.95	1347	DR-10	78.15
1012	MW-15	106.05	926	TW4-8	66.45	1229	TWN-4	52.45	732	DR-11	98.20
719	MW-17	72.13	922	TW4-9	61.15		TWN-5	ABANDON	729	DR-12	90.51
1256	MW-18	71.24	919	TW4-10	61.05	1247	TWN-6	77.25	722	DR-13	69.73
1236	MW-19	59.85	1219	TW4-11	60.25	1253	TWN-7	86.05	1358	DR-14	76.24
1425	MW-20	90.00	955	TW4-12	43.90		TWN-8	ABANDON	1429	DR-15	92.83
1435	MW-22	66.79	953	TW4-13	48.86		TWN-9	ABANDON	NA	DR-16	ABANDON
746	MW-23	115.28	950	TW4-14	82.36		TWN-10	ABANDON	1401	DR-17	67.91
1032	MW-24	113.35	916	TW4-15	74.80		TWN-11	ABANDON	NA	DR-18	ABANDON
1008	MW-25	75.00	1217	TW4-16	66.02		TWN-12	ABANDON	1404	DR-19	63.02
916	MW-26	74.80	1211	TW4-17	76.25		TWN-13	ABANDON	1413	DR-20	55.58
1224	MW-27	53.39	1305	TW4-18	64.17	1241	TWN-14	61.65	1419	DR-21	101.13
1034	MW-28	75.30	1158	TW4-19	68.40		TWN-15	ABANDON	1406	DR-22	DRY
1029	MW-29	101.00	914	TW4-20	70.14	1244	TWN-16	47.45	1417	DR-23	70.50
1206	MW-30	75.20	1306	TW4-21	63.22		TWN-17	ABANDON	1409	DR-24	44.00
1208	MW-31	68.15	912	TW4-22	60.40	1226	TWN-18	59.46	NA	DR-25	ABANDON
1211	MW-32	76.25	1006	TW4-23	67.03	853	TWN-19	53.00			
741	MW-33	DRY	910	TW4-24	66.86						
1017	MW-34	107.71	1308	TW4-25	63.78						
744	MW-35	112.16	936	TW4-26	64.54						
742	MW-36	110.32	941	TW4-27	80.13						
1015	MW-37	110.00	956	TW4-28	38.28						
			949	TW4-29	72.44	1					
			944	TW4-30	76.40						
			942	TW4-31	81.31						
			958	TW4-32	50.91						
			939	TW4-33	71.00						
			947	TW4-34	70.35	1					
			945	TW4-35	74.15						
			952	TW4-36	56.82						



5380 seep or spring showing elevation in feet amsl

NOTE: MW-4, MW-26, TW4-4, TW4-19, and TW4-20 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells

5552

05551 PIEZ-2

♀ 5593

芬5526

TW4-35

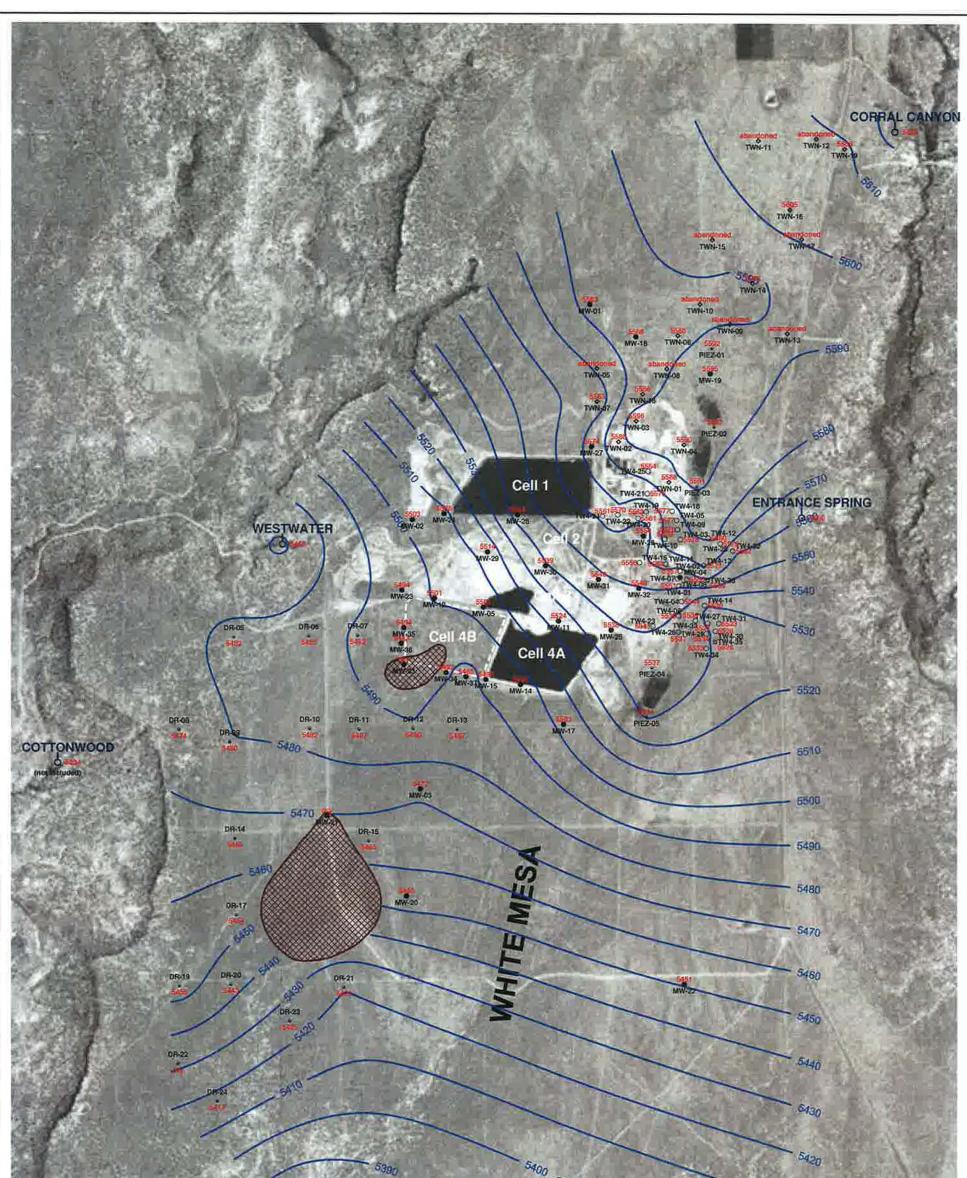
TW4-1

elevation in feet amsl

elevation in feet amsl

temporary perched monitoring well showing elevation in feet amsl

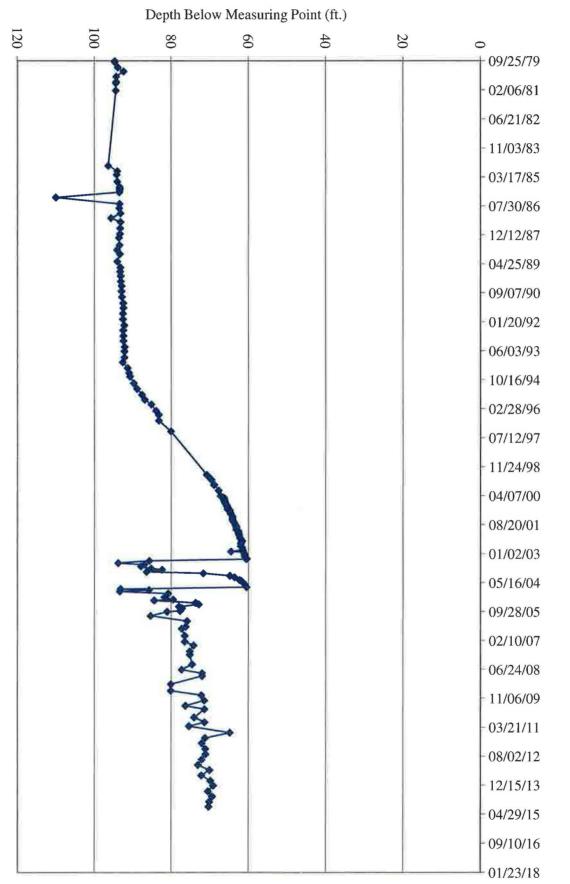
temporary perched monitoring well

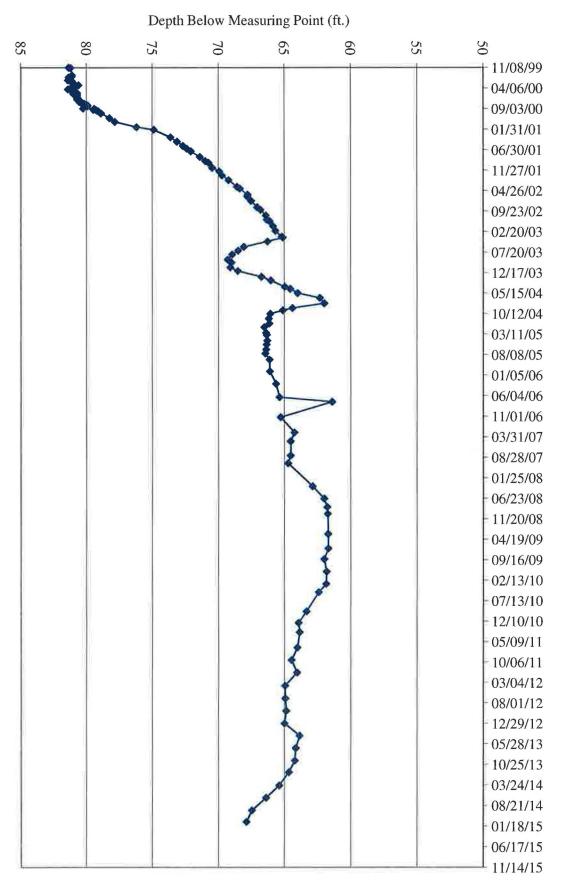

perched piezometer showing

installed May, 2014 showing elevation in feet amsl

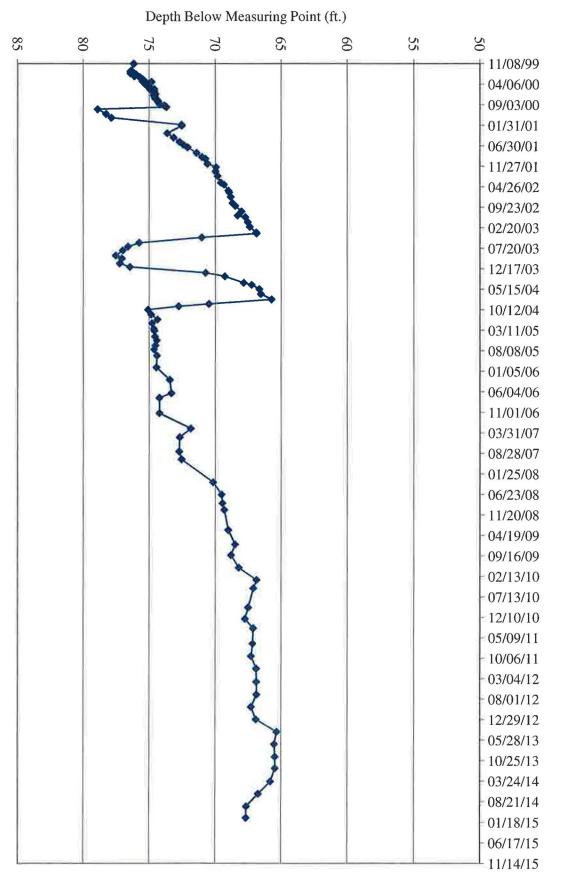
	HYDRO GEO CHEM, INC.	4	KRIGED 4th QUARTER, 2014 WATER LEVELS AND ESTIMATED CAPTURE ZONES WHITE MESA SITE (detail map)						
Y		APPROVED	DATE	REFERENCE H:/718000/feb15/WL/UwI1214cz.srf	FIGURE D-3				

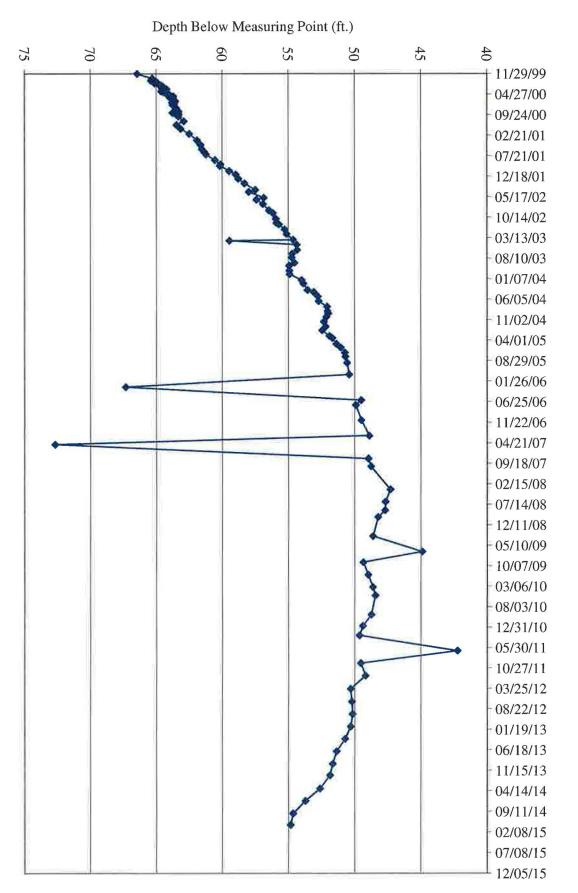
Tab E

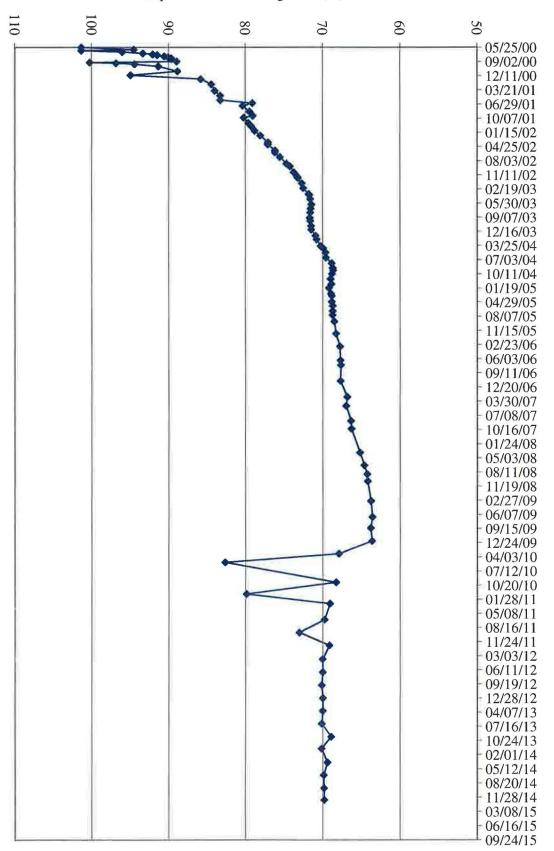

Kriged Previous Quarter Groundwater Contour Map

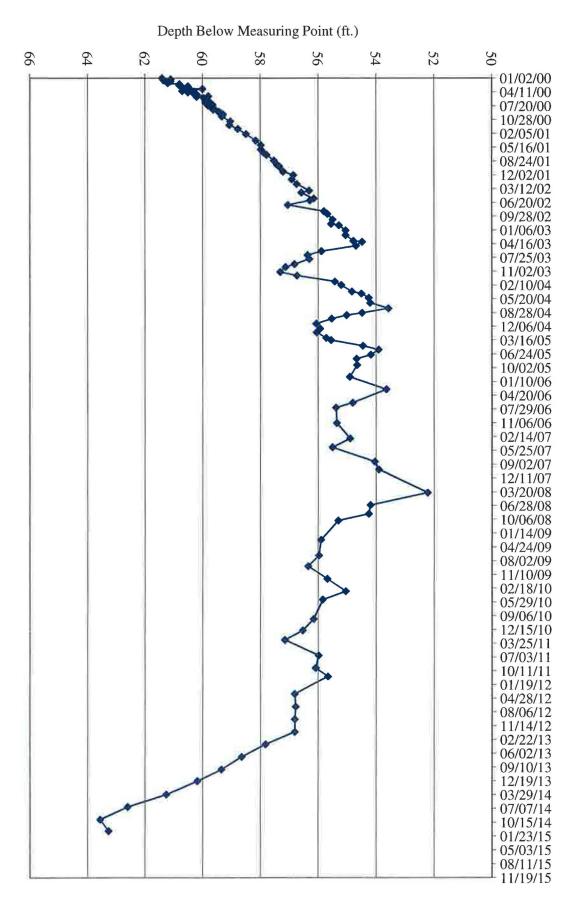

RUIN SPRING 5410 5400 **EXPLANATION** \bigotimes estimated dry area 5390 perched monitoring well showing elevation in feet amsl **MW-5** CORRAL SPRINGS 5503 A TW4-12 W4-12 temporary perched monitoring well 05580 showing elevation in feet amsl **WN-7** temporary perched nitrate monitoring well showing elevation in feet amsl TWN-7 1 mile perched piezometer showing elevation in feet amsl PIEZ-1 NOTE: MW-4, MW-26, TW4-4, TW4-19, and TW4-20 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells ● 5592 temporary perched monitoring well installed May, 2014 showing elevation in feet amsl **KRIGED 3rd QUARTER, 2014 WATER LEVELS** TW4-35 **HYDRO** ¥5526 WHITE MESA SITE GEO CHEM, INC. **RUIN SPRING** APPROVED DATE FIGURE E-1 REFERENCE 5380 seep or spring showing elevation in feet amsl H:/718000/nov14/Uwl0914.srf

Tab F

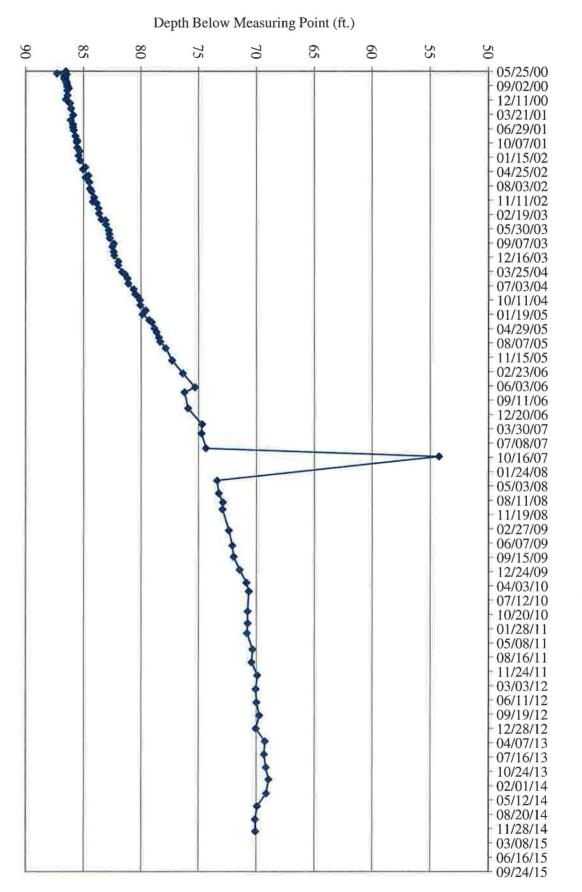

Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells


MW 4 Water Depth Over Time (ft. blmp)

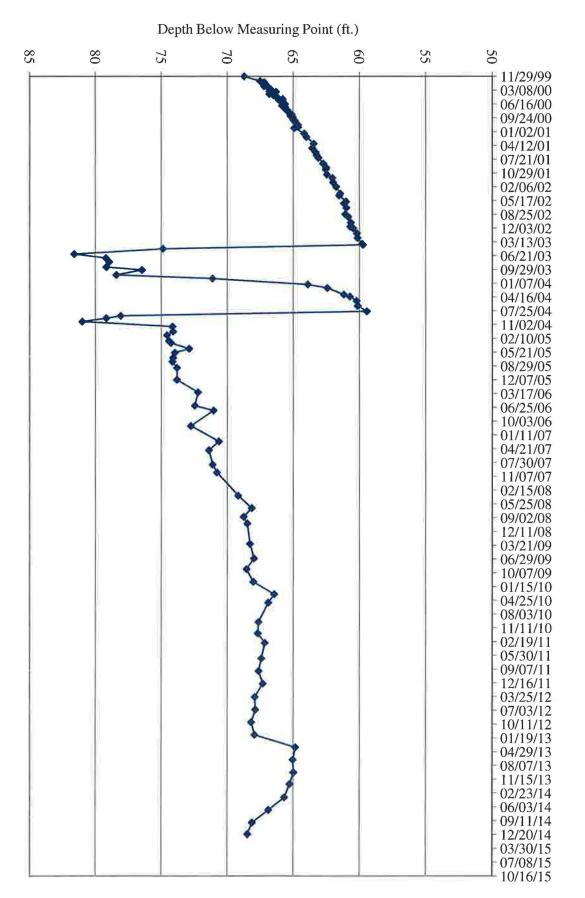

TW4-1 Water Depth Over Time (ft. blmp)

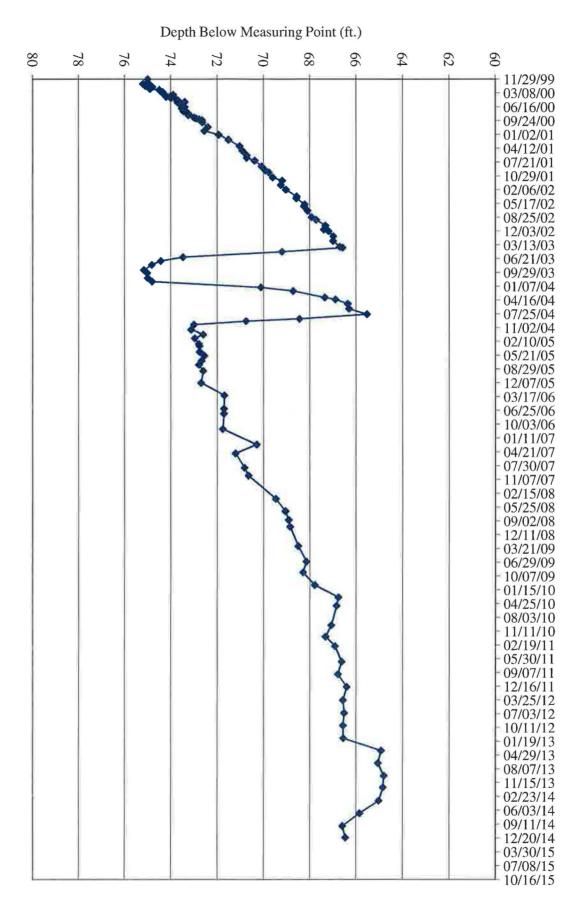


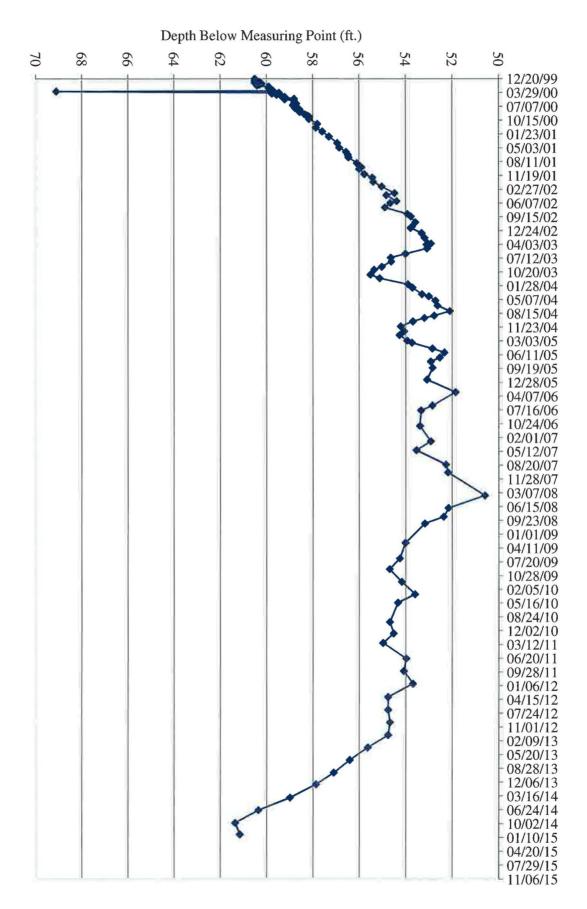
TW4-3 Water Depth Over Time (ft. blmp)

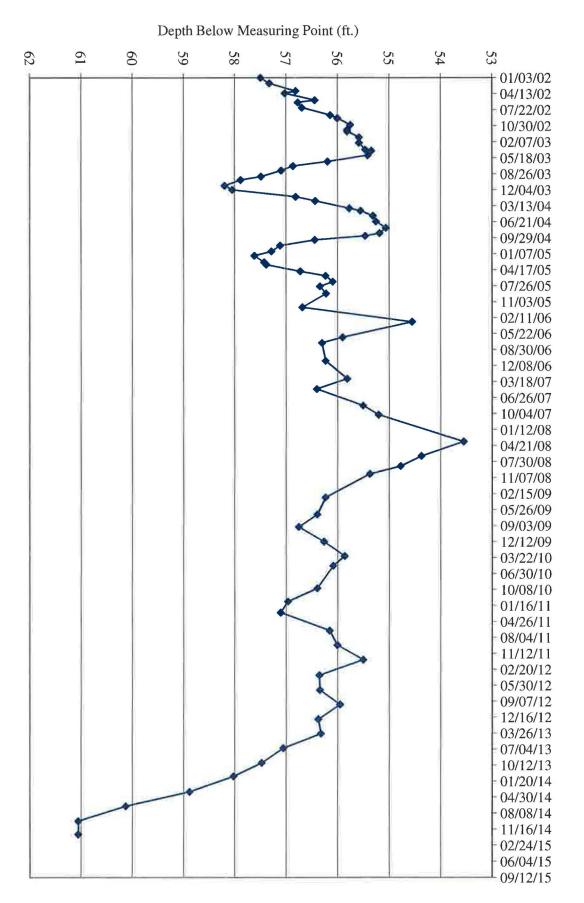


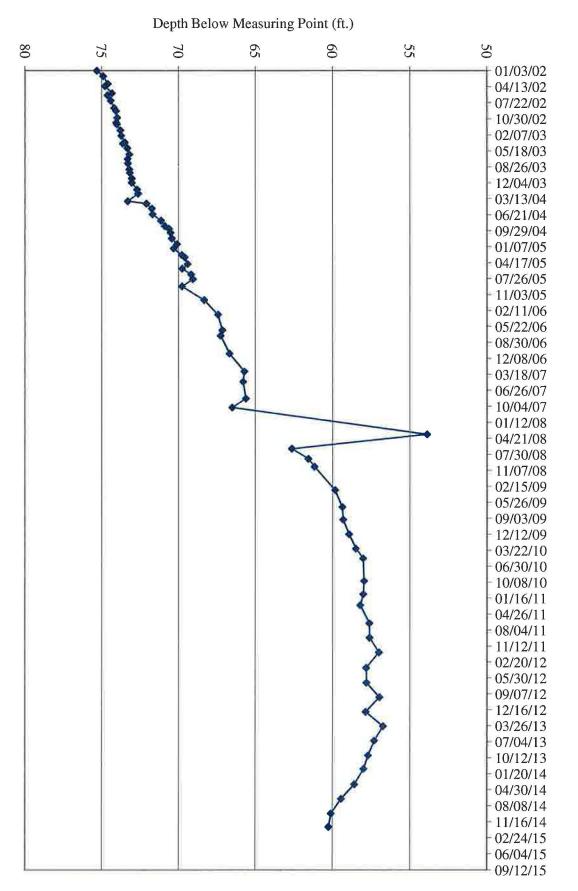
Depth Below Measuring Point (ft.)

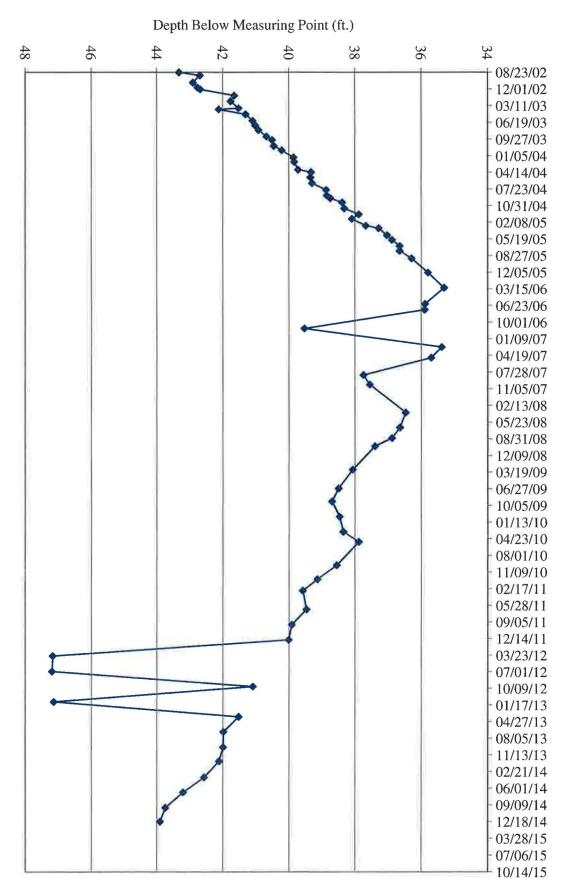

TW4-4 Water Depth Over Time (ft. blmp)

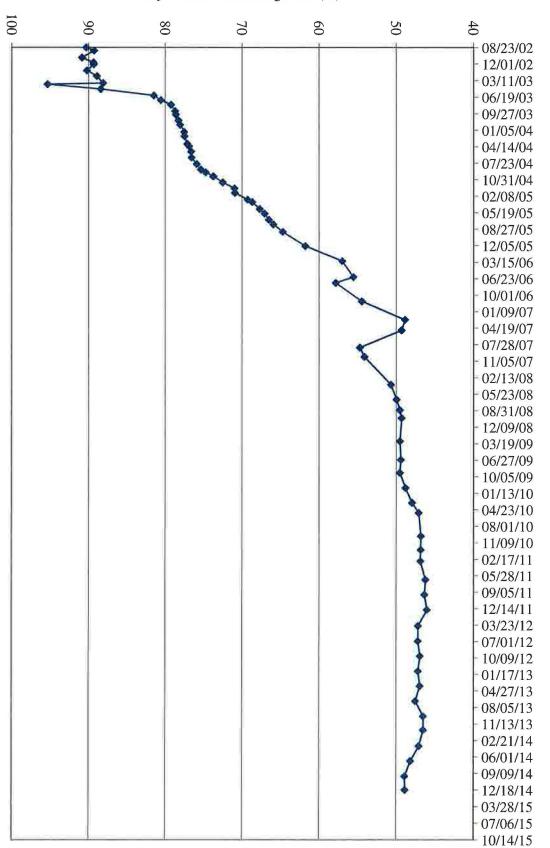

TW4-5 Water Depth Over Time (ft. blmp)


TW4-6 Water Depth Over Time (ft. blmp)

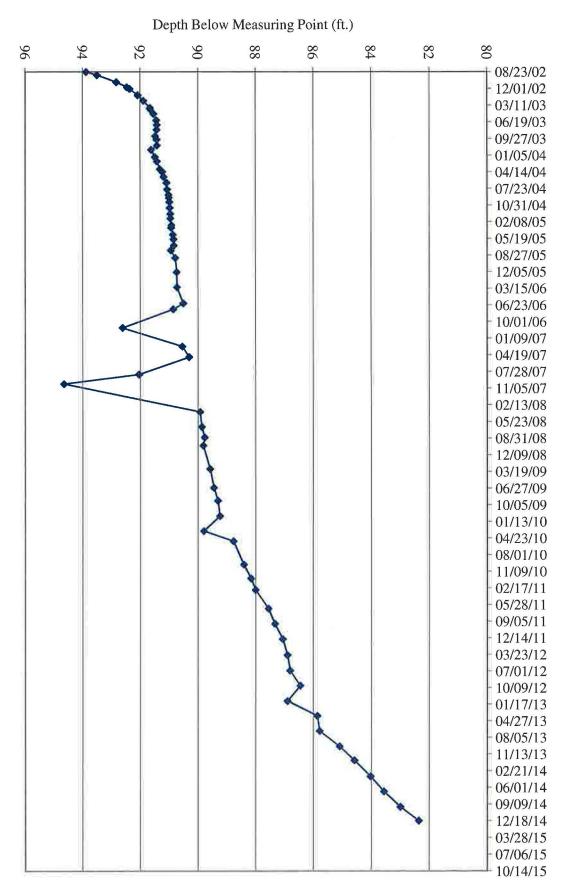

TW4-7 Water Depth Over Time (ft. blmp)

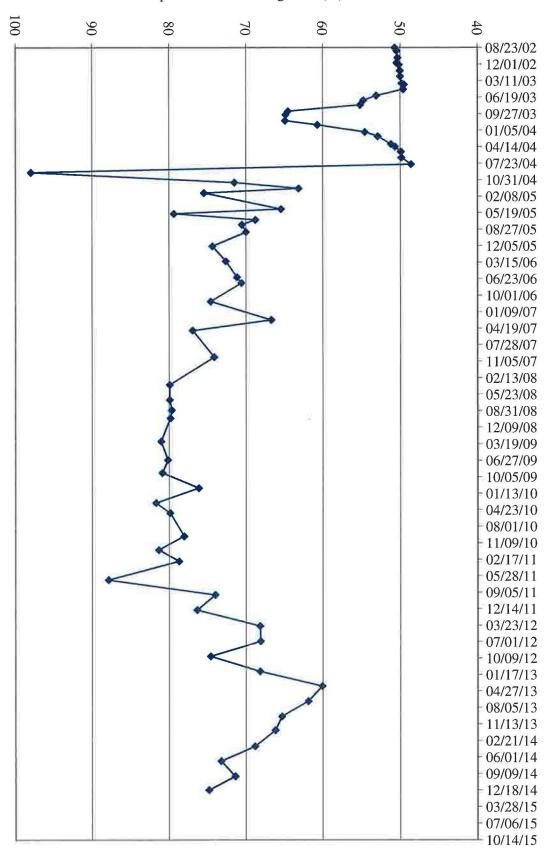





TW4-10 Water Depth Over Time (ft. blmp)

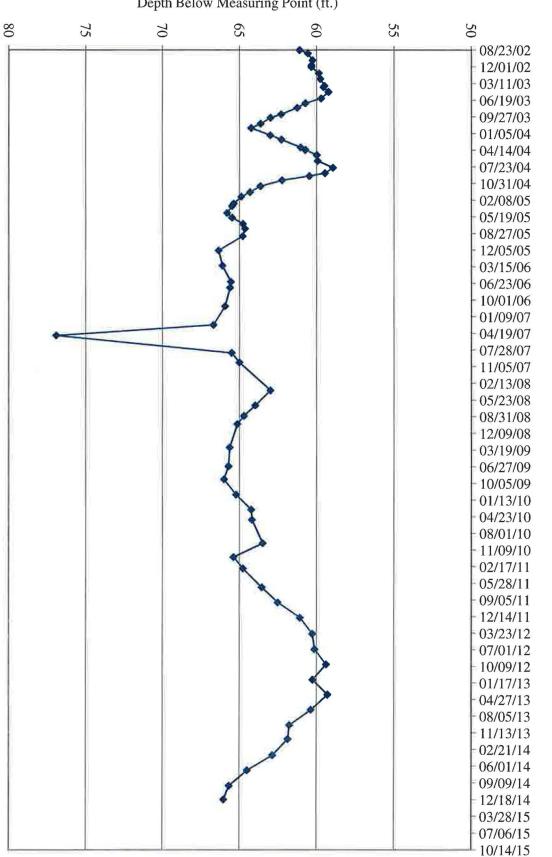
TW4-11 Water Depth Over Time (ft. blmp)



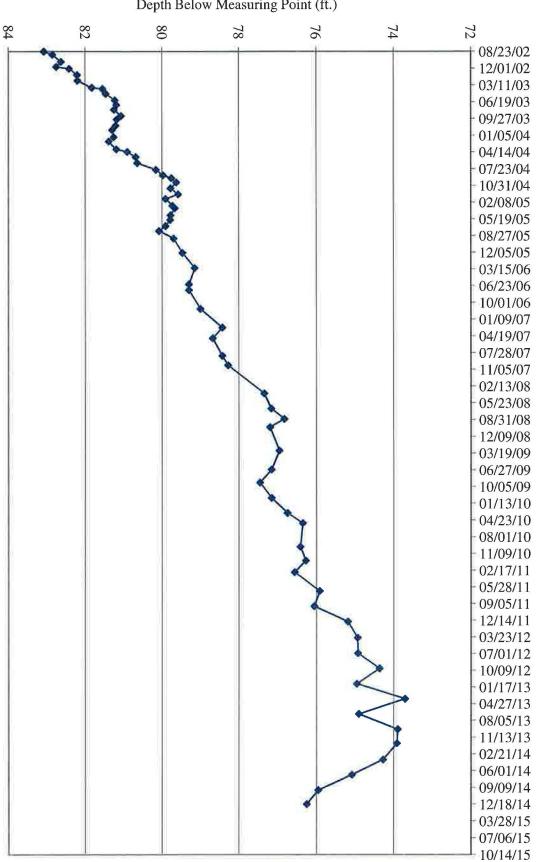


Depth Below Measuring Point (ft.)

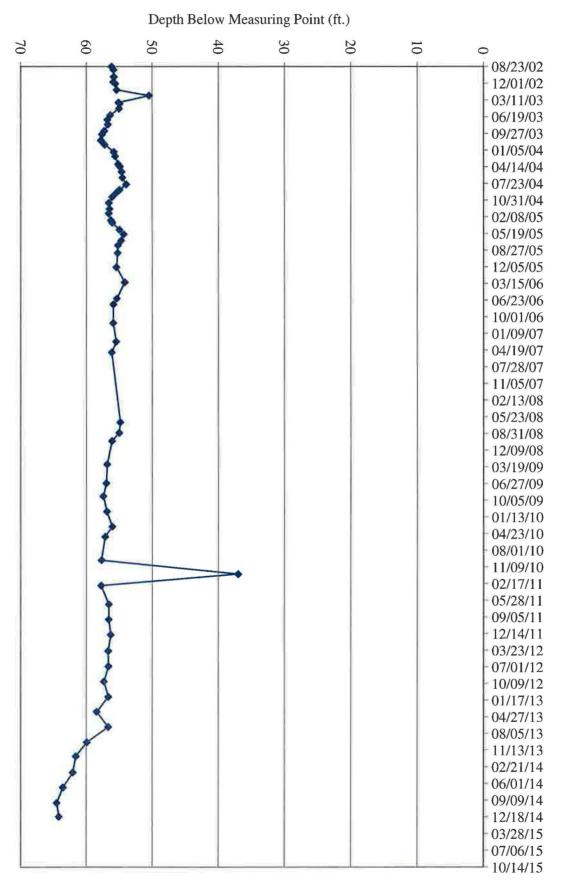
TW4-13 Water Depth Over Time (ft. blmp)



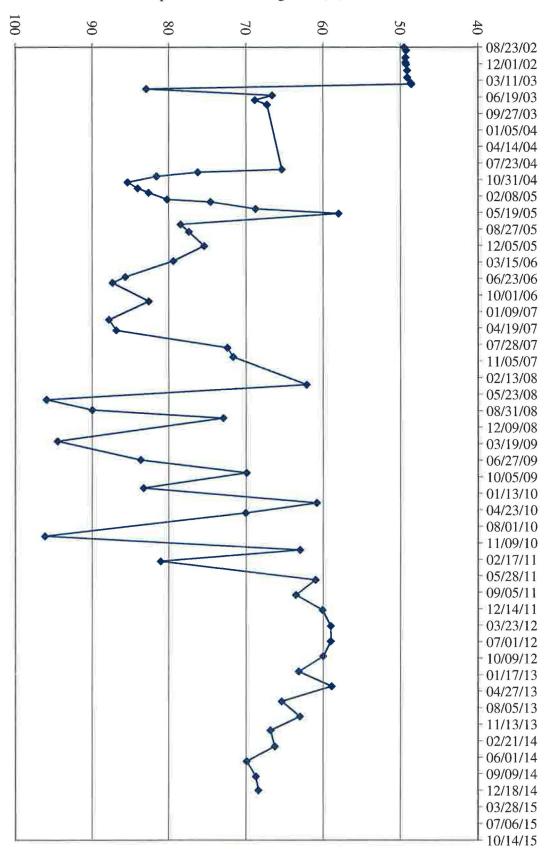
TW4-14 Water Depth Over Time (ft. blmp)


Depth Below Measuring Point (ft.)

MW-26 Water Depth Over Time (ft. blmp)

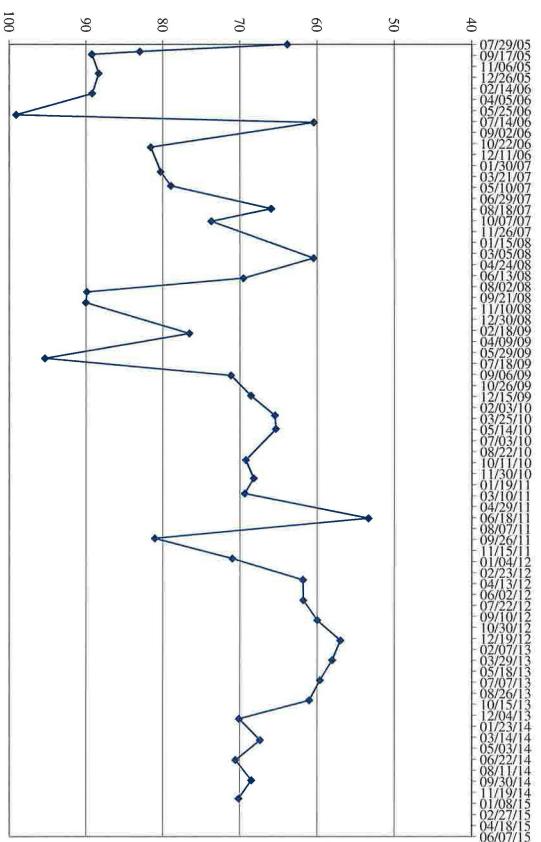

TW4-16 Water Depth Over Time (ft. blmp)

Depth Below Measuring Point (ft.)

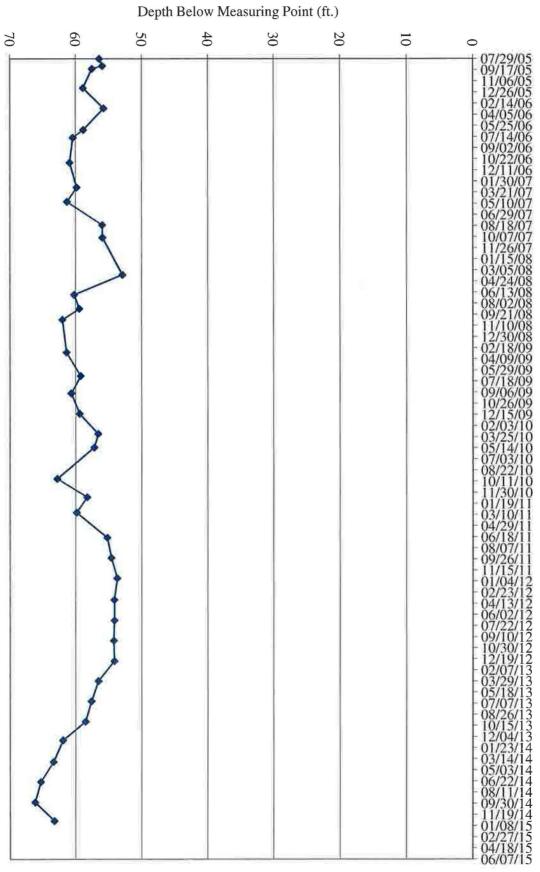


MW-32 Water Depth Over Time (ft. blmp)

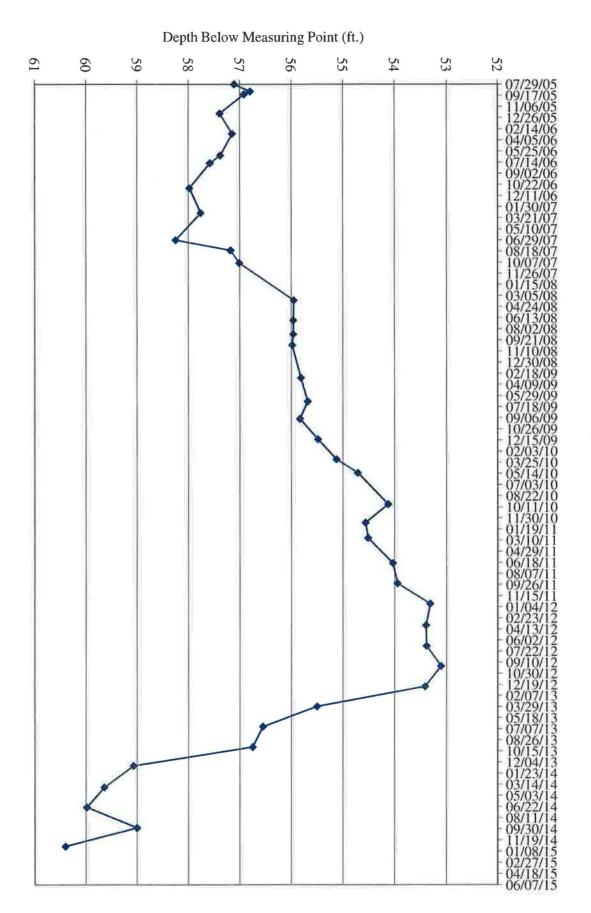
Depth Below Measuring Point (ft.)



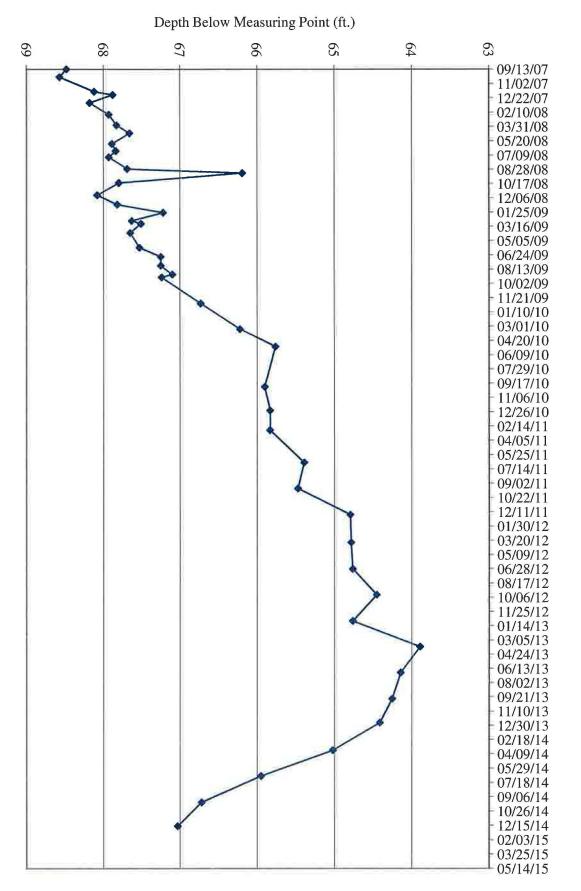
TW4-18 Water Depth Over Time (ft. blmp)

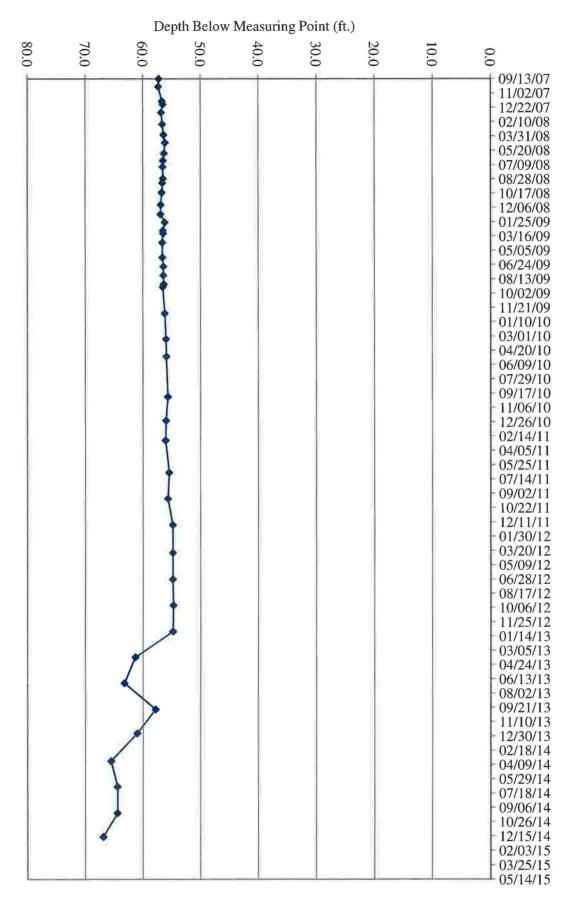

Depth Below Measuring Point (ft.)

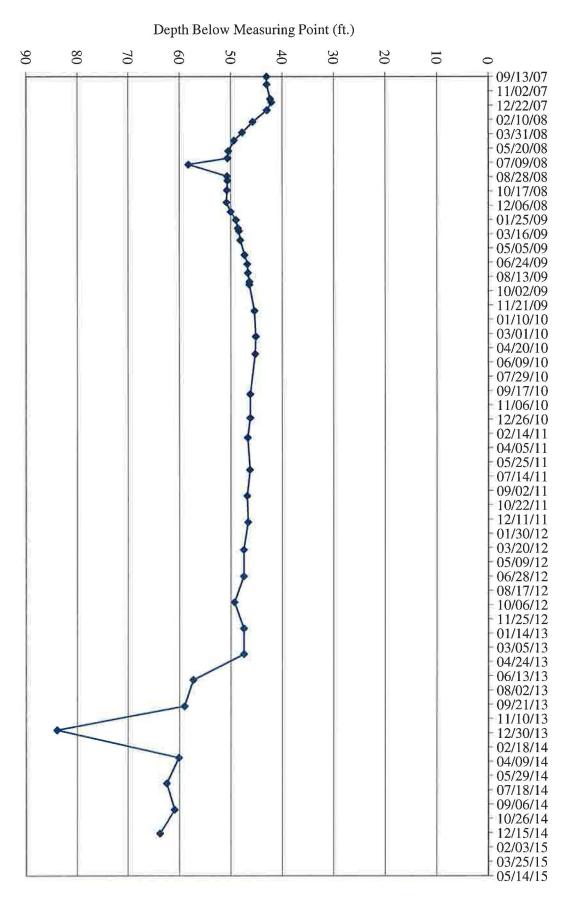
TW4-19 Water Depth Over Time (ft. blmp)

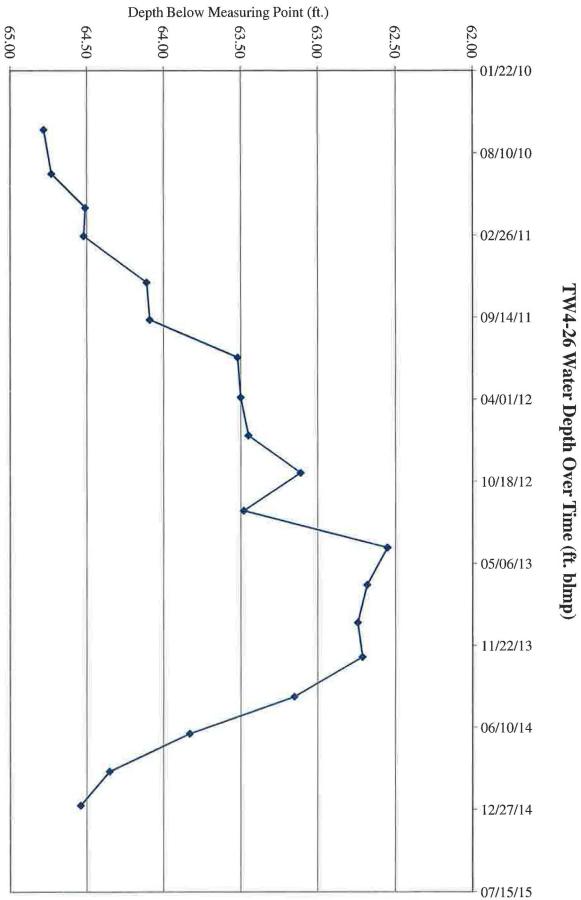


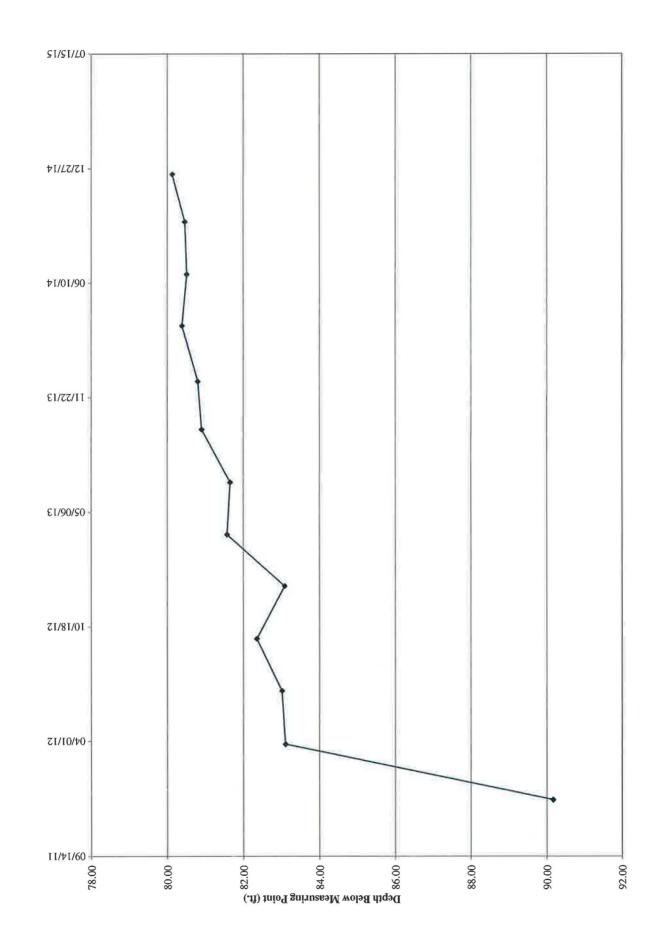
TW4-20 Water Depth Over Time (ft. blmp)


Depth Below Measuring Point (ft.)

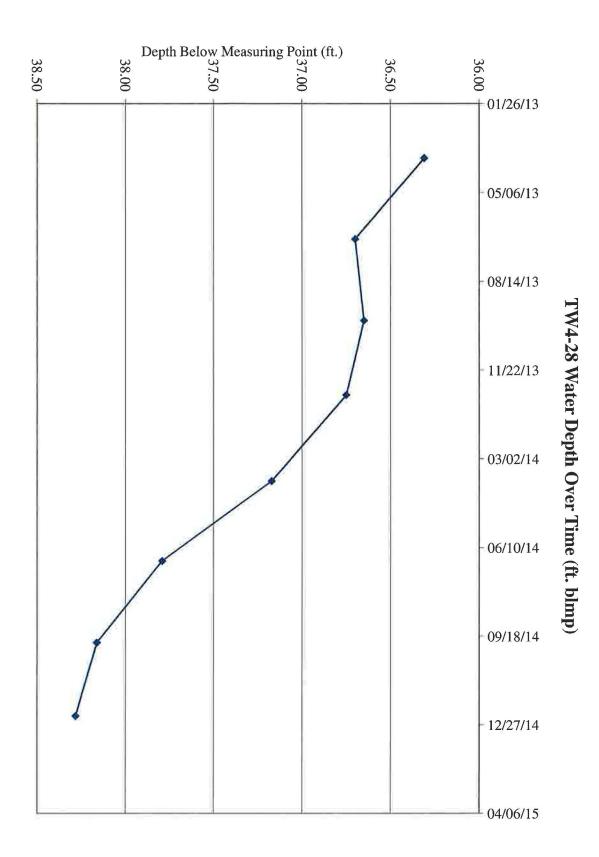


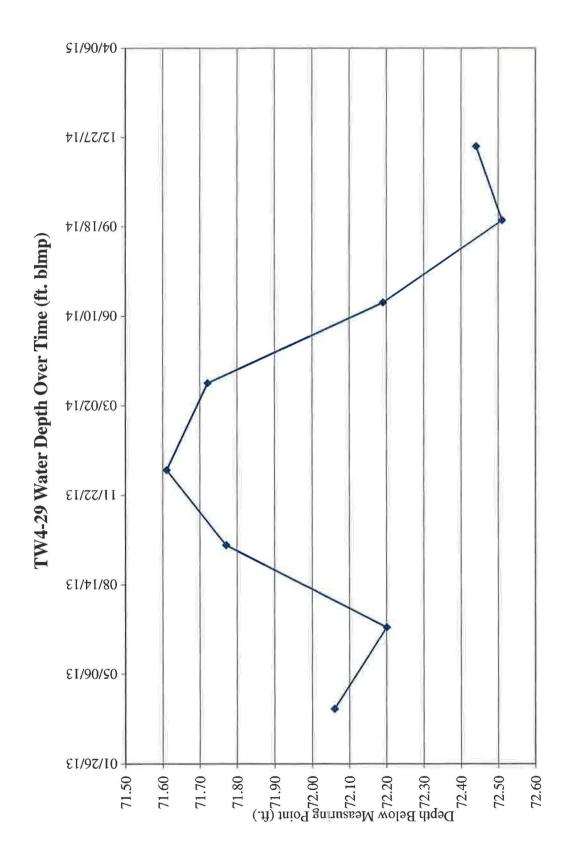


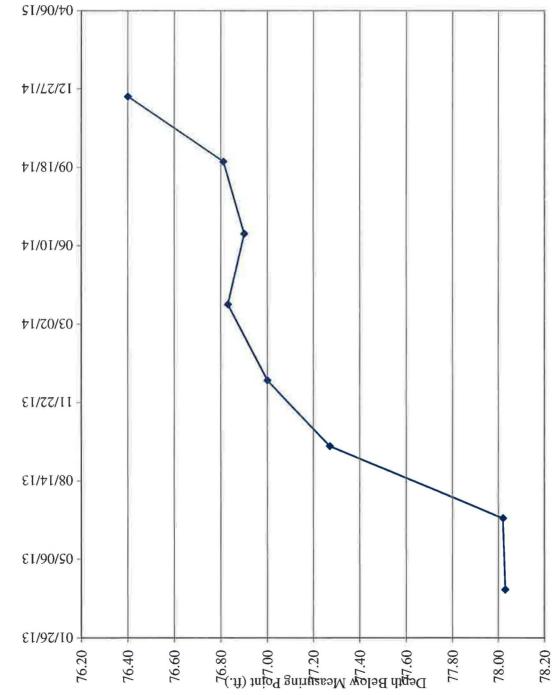

TW4-23 Water Depth Over Time (ft. blmp)

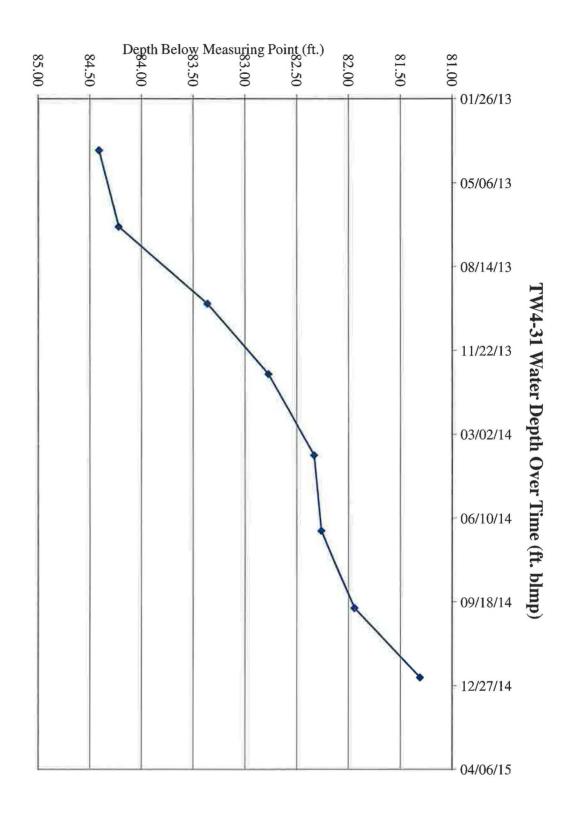


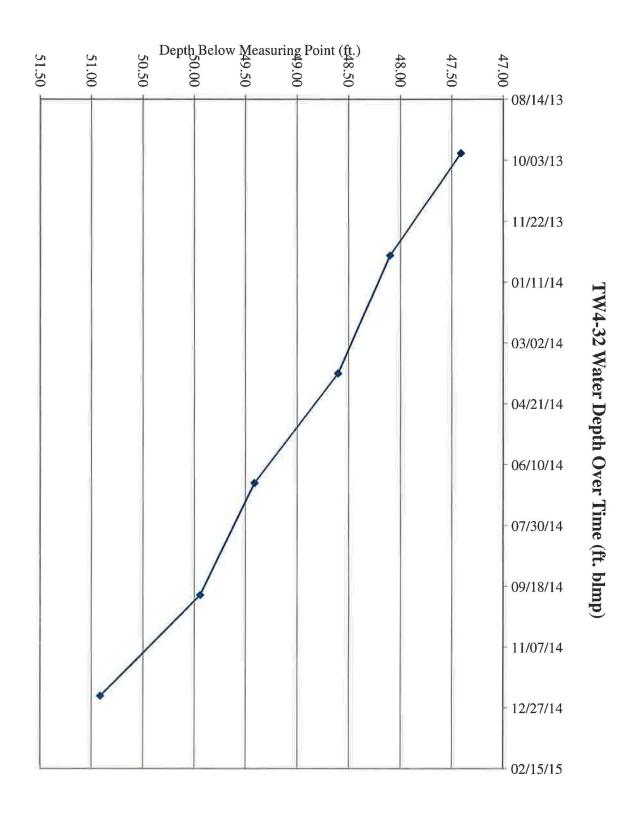
TW4-24 Water Depth Over Time (ft. blmp)

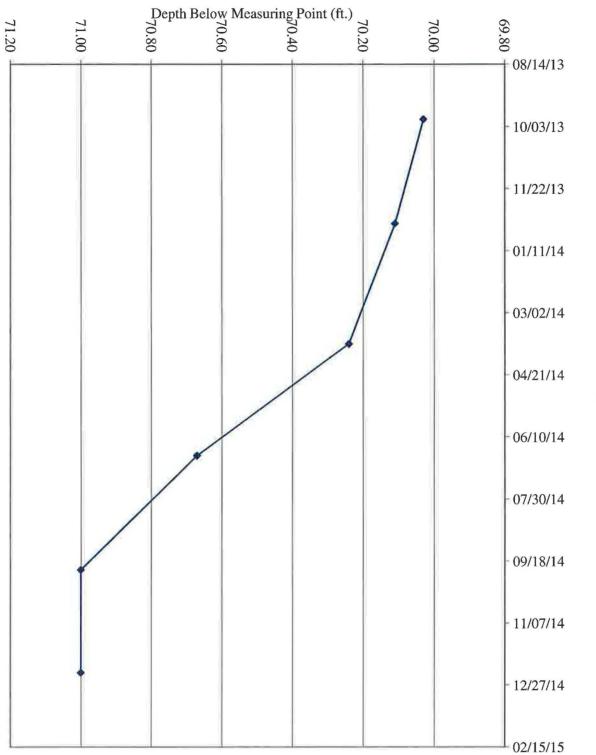



TW4-25 Water Depth Over Time (ft. blmp)

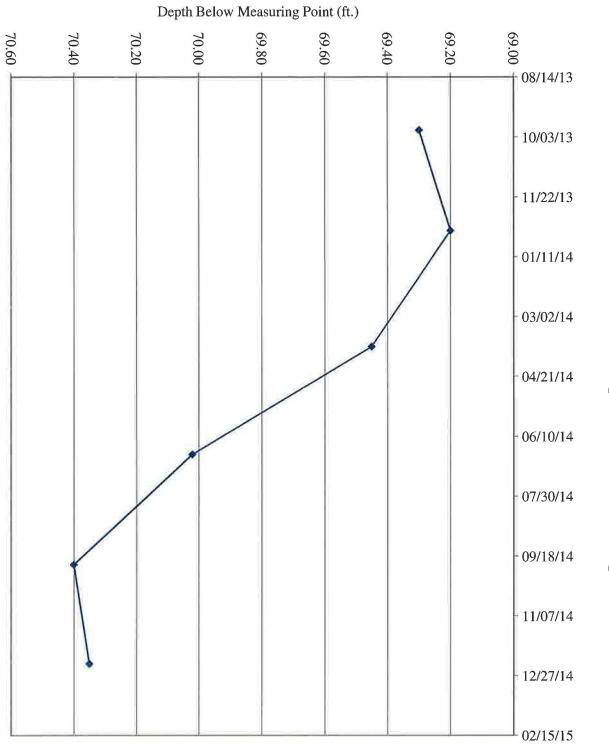


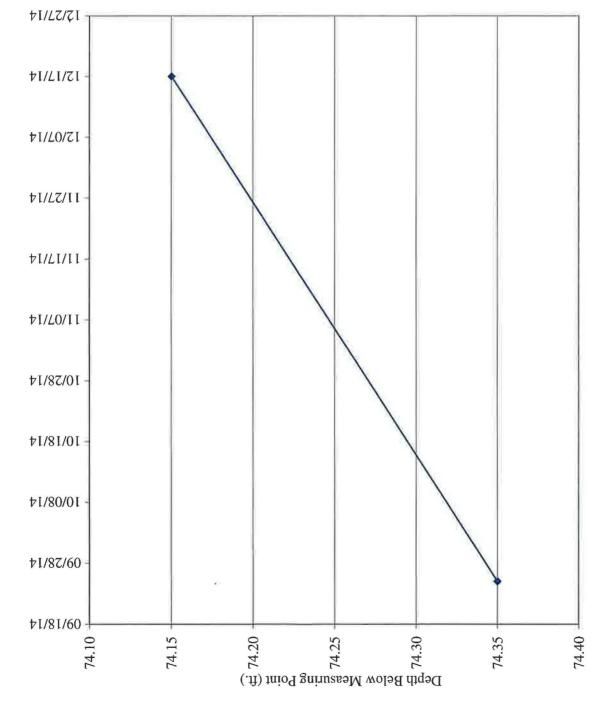

TW4-27 Water Depth Over Time (ft. blmp)

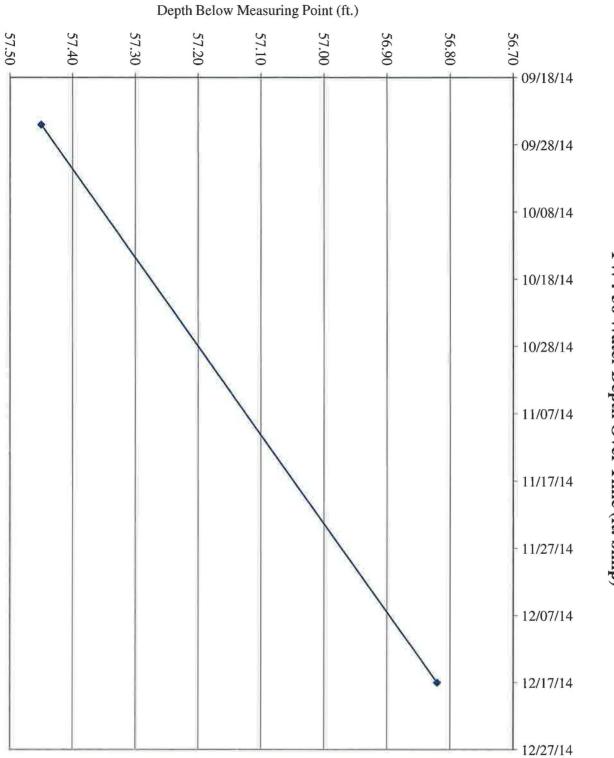




TW4-30 Water Depth Over Time (ft. blmp)






TW4-33 Water Depth Over Time (ft. blmp)

TW4-34 Water Depth Over Time (ft. blmp)

TW4-35 Water Depth Over Time (ft. blmp)

TW4-36 Water Depth Over Time (ft. blmp)

Tab G

Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells

	White Mesa Mill - Well MW4										
					Total or						
		Measuring			Measured	Total					
Water	Land	Point			Depth to	Depth to	Total				
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of				
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well				
(((1))	5,620.77	5,622.33	1.56	Montoring	(01000000)	(DIWLED)	123.6				
5,527.63	5,020.77	5,022.55		09/25/79	94.70	93.14	125.0				
5,527.63				10/10/79	94.70	93.14					
5,528.43				01/10/80	93.90	92.34					
5,529.93				03/20/80	92.40	90.84					
5,528.03				06/17/80	94.30	92.74					
5,528.03				09/15/80	94.30	92.74					
5,527.93				10/08/80	94.40	92.84					
5,527.93				02/12/81	94.40	92.84					
5,525.93				09/01/84	96.40	94.84					
5,528.33				12/01/84	94.00	92.44					
5,528.13				02/01/85	94.20	92.64					
5,528.33				06/01/85	94.00	92.44					
5,528.93				09/01/85	93.40	91.84					
5,528.93				10/01/85	93.40	91.84					
5,528.93				11/01/85	93.40	91.84					
5,528.83				12/01/85	93.50	91.94					
5,512.33				03/01/86	110.00	108.44					
5,528.91				06/19/86	93.42	91.86					
5,528.83				09/01/86	93.50	91.94					
5,529.16				12/01/86	93.17	91.61					
5,526.66				02/20/87	95.67	94.11					
5,529.16				04/28/87	93.17	91.61					
5,529.08				08/14/87	93.25	91.69					
5,529.00				11/20/87	93.33	91.77					
5,528.75				01/26/88	93.58	92.02					
5,528.91				06/01/88	93.42	91.86					
5,528.25				08/23/88	94.08	92.52					
5,529.00				11/02/88	93.33	91.77					
5,528.33				03/09/89	94.00	92.44					
5,529.10				06/21/89	93.23	91.67					
5,529.06				09/01/89	93.27	91.71					
5,529.21				11/15/89	93.12	91.56					
5,529.22				02/16/90	93.11	91.55					
5,529.43				05/08/90	92.90	91.34					
5,529.40				08/07/90	92.93	91.37					
5,529.53				11/13/90	92.80	91.24					
5,529.86				02/27/91	92.47	90.91					
5,529.91				05/21/91	92.42	90.86					
5,529.77				08/27/91	92.56	91.00					
5,529.79				12/03/91	92.54	90.98					
5,530.13				03/17/92	92.20	90.64					
5,529.85				06/11/92	92.48	90.92					
5,529.90				09/13/92	92.43	90.87					
5,547.70				0713172	/ 4 . fJ	20.07					

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,529.92				12/09/92	92.41	90.85	
5,530.25				03/24/93	92.08	90.52	
5,530.20				06/08/93	92.13	90.57	
5,530.19				09/22/93	92.14	90.58	
5,529.75				12/14/93	92.58	91.02	
5,530.98				03/24/94	91.35	89.79	
5,531.35				06/15/94	90.98	89.42	
5,531.62				08/18/94	90.71	89.15	
5,532.58				12/13/94	89.75	88.19	
5,533.42				03/16/95	88.91	87.35	
5,534.70				06/27/95	87.63	86.07	
5,535.44				09/20/95	86.89	85.33	
5,537.16				12/11/95	85.17	83.61	
5,538.37				03/28/96	83.96	82.40	
5,539.10				06/07/96	83.23	81.67	
5,539.13				09/16/96	83.20	81.64	
5,542.29				03/20/97	80.04	78.48	
5,551.58				04/07/99	70.75	69.19	
5,552.08				05/11/99	70.25	68.69	
5,552.83				07/06/99	69.50	67.94	
5,553.47				09/28/99	68.86	67.30	
5,554.63				01/03/00	67.70	66.14	
5,555.13				04/04/00	67.20	65.64	
5,555.73				05/02/00	66.60	65.04	
5,556.03				05/11/00	66.30	64.74	
5,555.73				05/15/00	66.60	65.04	
5,555.98				05/25/00	66.35	64.79	
5,556.05				06/09/00	66.28	64.72	
5,556.18				06/16/00	66.15	64.59	
5,556.05				06/26/00	66.28	64.72	
5,556.15				07/06/00	66.18	64.62	
5,556.18				07/13/00	66.15	64.59	
5,556.17				07/18/00	66.16	64.60	
5,556.26				07/25/00	66.07	64.51	
5,556.35				08/02/00	65.98	64.42	
5,556.38				08/09/00	65.95	64.39	
5,556.39				08/15/00	65.94	64.38	
5,556.57				08/31/00	65.76	64.20	
5,556.68				09/08/00	65.65	64.09	
5,556.73				09/13/00	65.60	64.04	
5,556.82				09/20/00	65.51	63.95	
5,556.84				09/29/00	65.49	63.93	
5,556.81				10/05/00	65.52	63.96	
- ,							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,556.89				10/12/00	65.44	63.88	
5,556.98				10/19/00	65.35	63.79	
5,557.01				10/23/00	65.32	63.76	
5,557.14				11/09/00	65.19	63.63	
5,557.17				11/14/00	65.16	63.60	
5,556.95				11/21/00	65.38	63.82	
5,557.08				11/30/00	65.25	63.69	
5,557.55				12/07/00	64.78	63.22	
5,557.66				01/14/01	64.67	63.11	
5,557.78				02/09/01	64.55	62.99	
5,558.28				03/29/01	64.05	62.49	
5,558.23				04/30/01	64.10	62.54	
5,558.31				05/31/01	64.02	62.46	
5,558.49				06/22/01	63.84	62.28	
5,558.66				07/10/01	63.67	62.11	
5,559.01				08/20/01	63.32	61.76	
5,559.24				09/19/01	63.09	61.53	
5,559.26				10/02/01	63.07	61.51	
5,559.27				11/08/01	63.06	61.50	
5,559.77				12/03/01	62.56	61.00	
5,559.78				01/03/02	62.55	60.99	
5,559.96				02/06/02	62.37	60.81	
5,560.16				03/26/02	62.17	60.61	
5,560.28				04/09/02	62.05	60.49	
5,560.76				05/23/02	61.57	60.01	
5,560.58				06/05/02	61.75	60.19	
5,560.43				07/08/02	61.90	60.34	
5,560.44				08/23/02	61.89	60.33	
5,560.71				09/11/02	61.62	60.06	
5,560.89				10/23/02	61.44	59.88	
5,557.86				11/22/02	64.47	62.91	
5,561.10				12/03/02	61.23	59.67	
5,561.39				01/09/03	60.94	59.38	
5,561.41				02/12/03	60.92	59.36	
5,561.93				03/26/03	60.40	58.84	
5,561.85				04/02/03	60.48	58.92	
5,536.62				05/01/03	85.71	84.15	
5,528.56				06/09/03	93.77	92.21	
5,535.28				07/07/03	87.05	85.49	
5,534.44				08/04/03	87.89	86.33	
5,537.10				09/11/03	85.23	83.67	
5,539.96				10/02/03	82.37	80.81	
5,535.91				11/07/03	86.42	84.86	
				And the set best process	and somethic state of	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,550.70				12/03/03	71.63	70.07	
5,557.58				01/15/04	64.75	63.19	
5,558.80				02/10/04	63.53	61.97	
5,560.08				03/28/04	62.25	60.69	
5,560.55				04/12/04	61.78	60.22	
5,561.06				05/13/04	61.27	59.71	
5,561.48				06/18/04	60.85	59.29	
5,561.86				07/28/04	60.47	58.91	
5,529.17				08/30/04	93.16	91.60	
5,536.55				09/16/04	85.78	84.22	
5,529.00				10/11/04	93.33	91.77	
5,541.55				11/16/04	80.78	79.22	
5,541.12				12/22/04	81.21	79.65	
5,540.59				01/18/05	81.74	80.18	
5,542.85				02/28/05	79.48	77.92	
5,537.91				03/15/05	84.42	82.86	
5,548.67				04/26/05	73.66	72.10	
5,549.53				05/24/05	72.80	71.24	
5,544.36				06/30/05	77.97	76.41	
5,545.16				07/29/05	77.17	75.61	
5,544.67				09/12/05	77.66	76.10	
5,541.28				09/27/05	81.05	79.49	
5,536.96				12/07/05	85.37	83.81	
5,546.49				03/08/06	75.84	74.28	
5,546.15				06/13/06	76.18	74.62	
5,545.15				07/18/06	77.18	75.62	
5,545.91				11/17/06	76.42	74.86	
5,545.90				02/27/07	76.43	74.87	
5,548.16				05/02/07	74.17	72.61	
5,547.20				08/13/07	75.13	73.57	
5,547.20				10/10/07	75.13	73.57	
5,547.79				03/26/08	74.54	72.98	
5,545.09				06/25/08	77.24	75.68	
5,550.36				08/26/08	71.97	70.41	
5,550.39				10/14/08	71.94	70.38	
5,542.25				03/03/09	80.08	78.52	
5,542.25				06/24/09	80.08	78.52	
5,550.19				09/10/09	72.14	70.58	
5,550.94				12/11/09	71.39	69.83	
5,546.08				03/11/10	76.25	74.69	
5,550.98				05/11/10	71.35	69.79	
5,548.33				09/29/10	74.00	72.44	
5,551.01				12/21/10	71.32	69.76	

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,620.77	5,622.33	1.56				123.6
		_	02/28/11	75.33	73.77	
			06/21/11	64.79	63.23	
			09/20/11	71.19	69.63	
			12/21/11	72.01	70.45	
			03/27/12	71.11	69.55	
			06/28/12	71.04	69.48	
			09/27/12	72.04	70.48	
			12/28/12	73.02	71.46	
			03/28/13	70.03	68.47	
			06/27/13	72.15	70.59	
			09/27/13	69.78	68.22	
			12/20/13	69.10	67.54	
			03/27/14	70.42	68.86	
			06/25/14	69.40	67.84	
			09/25/14	70.10	68.54	
			12/17/14	70.25	68.69	
	Surface (LSD)	LandPointSurfaceElevation(LSD)(MP)	LandPointSurfaceElevationLength Of(LSD)(MP)Riser (L)	Land Point Length Of Date Of Surface Elevation Riser (L) Monitoring 5,620.77 5,622.33 1.56 02/28/11 5,620.77 5,622.33 1.56 02/28/11 06/21/11 06/21/11 09/20/11 12/21/11 03/27/12 06/28/12 09/27/12 06/28/12 09/27/12 12/28/12 03/28/13 06/27/13 09/27/13 12/20/13 03/27/14 03/27/14 09/25/14 12/20/13 03/27/14 03/25/14	KeasuringMeasuredLandPointDepth toSurfaceElevationLength OfMate Of(LSD)(MP)Riser (L)Monitoring(bw.MP)5,620.775,622.331.560/2/2/1164.795,620.775,622.331.560/2/2/1164.796,621/1164.790/2/2/1171.197,1912/21/1172.017,1912/21/1172.017,110/2/2/1271.1106/28/1271.049,1212/28/1273.0210,1212/28/1370.0311,130/2/27/1369.7812,1412/20/1369.1012,150/2/27/1469.4011,1412/20/1369.1012,150/2/27/1469.4014,1414/20/1369.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/1469.4014,1514/20/14 <td>HeasuringMeasuredTotalLandPointLength OPDate OPDepth toSurfaceElevationLength OPMonitoringWaterWater(LSD)(MP)Riser (L)MonitoringOlw.MD)(bw.LSD)5,620.775,622.331.565,620.775,622.331.566,621/1164.7963.2309/20/1171.1969.6312/21/1172.0170.4503/27/1271.1169.5506/28/1271.0469.4809/27/1271.0469.4812/28/1273.0271.4603/28/1370.0368.4706/27/1369.71369.71369.7169.5269.2212/20/1369.71369.7169.75468.2212/20/1369.1067.5403/27/1470.4268.8606/25/1469.4067.8403/27/1469.4067.8412/20/1369.1067.5403/27/1469.4067.8412/20/1369.1067.5403/27/1469.4067.8412/20/1469.4067.8403/27/1469.4067.8414/1414/1414/1464.6467.8403/27/1469.4015/1469.4067.8403/27/1469.4067.8415/1414/1414/1464.7464.7467.8415/1414/1414/1464.7464.7464.7415/1414/1414/14<</td>	HeasuringMeasuredTotalLandPointLength OPDate OPDepth toSurfaceElevationLength OPMonitoringWaterWater(LSD)(MP)Riser (L)MonitoringOlw.MD)(bw.LSD)5,620.775,622.331.565,620.775,622.331.566,621/1164.7963.2309/20/1171.1969.6312/21/1172.0170.4503/27/1271.1169.5506/28/1271.0469.4809/27/1271.0469.4812/28/1273.0271.4603/28/1370.0368.4706/27/1369.71369.71369.7169.5269.2212/20/1369.71369.7169.75468.2212/20/1369.1067.5403/27/1470.4268.8606/25/1469.4067.8403/27/1469.4067.8412/20/1369.1067.5403/27/1469.4067.8412/20/1369.1067.5403/27/1469.4067.8412/20/1469.4067.8403/27/1469.4067.8414/1414/1414/1464.6467.8403/27/1469.4015/1469.4067.8403/27/1469.4067.8415/1414/1414/1464.7464.7467.8415/1414/1414/1464.7464.7464.7415/1414/1414/14<

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02				111.04
5,537.23				11/08/99	81.35	80.33	
5,537.38				11/09/99	81.20	80.18	
5,537.48				01/02/00	81.10	80.08	
5,537.48				01/10/00	81.10	80.08	
5,537.23				01/17/00	81.35	80.33	
5,537.28				01/24/00	81.30	80.28	
5,537.28				02/01/00	81.30	80.28	
5,537.18				02/07/00	81.40	80.38	
5,537.48				02/14/00	81.10	80.08	
5,537.48				02/23/00	81.10	80.08	
5,537.58				03/01/00	81.00	79.98	
5,537.68				03/08/00	80.90	79.88	
5,537.98				03/15/00	80.60	79.58	
5,537.68				03/20/00	80.90	79.88	
5,537.68				03/29/00	80.90	79.88	
5,537.43				04/04/00	81.15	80.13	
5,537.18				04/13/00	81.40	80.38	
5,537.48				04/21/00	81.10	80.08	
5,537.68				04/28/00	80.90	79.88	
5,537.58				05/01/00	81.00	79.98	
5,537.88				05/11/00	80.70	79.68	
5,537.58				05/15/00	81.00	79.98	
5,537.88				05/25/00	80.70	79.68	
5,537.88				06/09/00	80.70	79.68	
5,537.90				06/16/00	80.68	79.66	
5,537.88				06/26/00	80.70	79.68	
5,538.10				07/06/00	80.48	79.46	
5,538.04				07/13/00	80.54	79.52	
5,538.16				07/18/00	80.42	79.40	
5,538.42				07/27/00	80.16	79.14	
5,538.56				08/02/00	80.02	79.00	
5,538.68				08/09/00	79.90	78.88	
5,538.66				08/15/00	79.92	78.90	
5,538.33				08/31/00	80.25	79.23	
5,539.18				09/01/00	79.40	78.38	
5,539.12				09/08/00	79.46	78.44	
5,539.34				09/13/00	79.24	78.22	
5,539.50				09/20/00	79.08	78.06	
5,539.69				10/05/00	78.89	77.87	
5,540.33				11/09/00	78.25	77.23	
5,540.74				12/06/00	77.84	76.82	
5,542.39				01/14/01	76.19	75.17	
5,543.69				02/02/01	74.89	73.87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02				111.04
5,544.96				03/29/01	73.62	72.60	
5,545.45				04/30/01	73.13	72.11	
5,545.89				05/31/01	72.69	71.67	
5,546.19				06/21/01	72.39	71.37	
5,546.50				07/10/01	72.08	71.06	
5,547.18				08/20/01	71.40	70.38	
5,547.59				09/19/01	70.99	69.97	
5,547.84				10/02/01	70.74	69.72	
5,548.12				11/08/01	70.46	69.44	
5,548.65				12/03/01	69.93	68.91	
5,548.87				01/03/02	69.71	68.69	
5,549.37				02/06/02	69.21	68.19	
5,550.00				03/26/02	68.58	67.56	
5,550.22				04/09/02	68.36	67.34	
5,550.81				05/23/02	67.77	66.75	
5,550.79				06/05/02	67.79	66.77	
5,551.08				07/08/02	67.50	66.48	
5,551.54				08/23/02	67.04	66.02	
5,551.79				09/11/02	66.79	65.77	
5,552.19				10/23/02	66.39	65.37	
5,552.27				11/22/02	66.31	65.29	
5,552.48				12/03/02	66.10	65.08	
5,552.74				01/09/03	65.84	64.82	
5,552.92				02/12/03	65.66	64.64	
5,553.40				03/26/03	65.18	64.16	
5,553.48				04/02/03	65.10	64.08	
5,552.32				05/01/03	66.26	65.24	
5,550.53				06/09/03	68.05	67.03	
5,550.09				07/07/03	68.49	67.47	
5,549.64				08/04/03	68.94	67.92	
5,549.31				09/11/03	69.27	68.25	
5,549.58				10/02/03	69.00	67.98	
5,549.50				11/07/03	69.08	68.06	
5,550.07				12/03/03	68.51	67.49	
5,551.86				01/15/04	66.72	65.70	
5,552.57				02/10/04	66.01	64.99	
5,553.63				03/28/04	64.95	63.93	
5,554.04				04/12/04	64.54	63.52	
5,554.60				05/13/04	63.98	62.96	
5,556.28				06/18/04	62.30	61.28	
5,556.61				07/28/04	61.97	60.95	
5,554.21				08/30/04	64.37	63.35	
5,553.49				09/16/04	65.09	64.07	

		White	e Mesa Mil	I - Well TV			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02			·	111.04
5,552.53				10/11/04	66.05	65.03	
5,552.42				11/16/04	66.16	65.14	
5,552.46				12/22/04	66.12	65.10	
5,552.07				01/18/05	66.51	65.49	
5,552.21				02/28/05	66.37	65.35	
5,552.26				03/15/05	66.32	65.30	
5,552.30				04/26/05	66.28	65.26	
5,552.25				05/24/05	66.33	65.31	
5,552.22				06/30/05	66.36	65.34	
5,552.15				07/29/05	66.43	65.41	
5,552.47				09/12/05	66.11	65.09	
5,552.50				12/07/05	66.08	65.06	
5,552.96				03/08/06	65.62	64.60	
5,553.23				06/14/06	65.35	64.33	
5,557.20				07/18/06	61.38	60.36	
5,553.32				11/07/06	65.26	64.24	
5,554.35				02/27/07	64.23	63.21	
5,554.07				05/02/07	64.51	63.49	
5,554.07				08/14/07	64.51	63.49	
5,553.88				10/10/07	64.70	63.68	
5,555.73				03/26/08	62.85	61.83	
5,556.60				06/24/08	61.98	60.96	
5,556.83				08/26/08	61.75	60.73	
5,556.87				10/14/08	61.71	60.69	
5,556.90				03/10/09	61.68	60.66	
5,556.91				06/24/09	61.67	60.65	
5,556.61				09/10/09	61.97	60.95	
5,556.78				12/11/09	61.8	60.78	
5,556.75				03/11/10	61.83	60.81	
5,556.19				05/11/10	62.39	61.37	
5,555.26				09/29/10	63.32	62.30	
5,554.66				12/21/10	63.92	62.90	
5,554.74				02/28/11	63.84	62.82	
5,554.57				06/21/11	64.01	62.99	
5,554.13				09/20/11	64.45	63.43	
5,554.54				12/21/11	64.04	63.02	
5,553.64				03/27/12	64.94	63.92	
5,553.66				06/28/12	64.92	63.90	
5,553.73				09/27/12	64.85	63.83	
5,553.59				12/28/12	64.99	63.97	
5,554.73				03/28/13	63.85	62.83	
5,554.44				06/27/13	64.14	63.12	
5,554.37				09/27/13	64.21	63.19	
0,00 1107						55.17	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,618.58	1.02				111.04
5,553.92				12/20/13	64.66	63.64	
5,553.20				03/27/14	65.38	64.36	
5,552.20				06/25/14	66.38	65.36	
5,551.13				09/25/14	67.45	66.43	
5,550.72				12/17/14	67.86	66.84	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62				121.125
5,548.57				11/08/99	76.15	74.53	
5,548.57				11/09/99	76.15	74.53	
5,548.32				01/02/00	76.40	74.78	
5,548.52				01/10/00	76.20	74.58	
5,548.32				01/17/00	76.40	74.78	
5,548.72				01/24/00	76.00	74.38	
5,548.62				02/01/00	76.10	74.48	
5,548.62				02/07/00	76.10	74.48	
5,549.02				02/14/00	75.70	74.08	
5,549.12				02/23/00	75.60	73.98	
5,549.22				03/01/00	75.50	73.88	
5,549.32				03/08/00	75.40	73.78	
5,549.22				03/15/00	75.50	73.88	
5,549.92				03/20/00	74.80	73.18	
5,549.72				03/29/00	75.00	73.38	
5,549.42				04/04/00	75.30	73.68	
5,549.52				04/13/00	75.20	73.58	
5,549.72				04/21/00	75.00	73.38	
5,549.82				04/28/00	74.90	73.28	
5,549.82				05/01/00	74.90	73.28	
5,550.12				05/11/00	74.60	72.98	
5,549.82				05/15/00	74.90	73.28	
5,550.12				05/25/00	74.60	72.98	
5,550.12				06/09/00	74.60	72.98	
5,550.22				06/16/00	74.50	72.88	
5,550.07				06/26/00	74.65	73.03	
5,550.17				07/06/00	74.55	72.93	
5,550.17				07/13/00	74.55	72.93	
5,550.18				07/18/00	74.54	72.92	
5,550.33				07/27/00	74.39	72.77	
5,550.38				08/02/00	74.34	72.72	
5,550.40				08/09/00	74.32	72.70	
5,550.42				08/15/00	74.30	72.68	
5,550.54				08/31/00	74.18	72.56	
5,550.87				09/08/00	73.85	72.23	
5,550.97				09/13/00	73.75	72.13	
5,551.04				09/20/00	73.68	72.06	
5,545.83				10/05/00	78.89	77.27	
5,546.47				11/09/00	78.25	76.63	
5,546.88				12/06/00	77.84	76.22	
5,552.18				01/26/01	72.54	70.92	
5,552.20				02/02/01	72.52	70.90	
5,551.10				03/29/01	73.62	72.00	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62				121.125
5,551.59				04/30/01	73.13	71.51	
5,552.03				05/31/01	72.69	71.07	
5,552.33				06/21/01	72.39	70.77	
5,552.64				07/10/01	72.08	70.46	
5,553.32				08/20/01	71.40	69.78	
5,553.73				09/19/01	70.99	69.37	
5,553.98				10/02/01	70.74	69.12	
5,554.14				11/08/01	70.58	68.96	
5,554.79				12/03/01	69.93	68.31	
5,554.74				01/03/02	69.98	68.36	
5,554.91				02/06/02	69.81	68.19	
5,555.15				03/26/02	69.57	67.95	
5,555.39				04/09/02	69.33	67.71	
5,555.73				05/23/02	68.99	67.37	
5,555.79				06/05/02	68.93	67.31	
5,555.91				07/08/02	68.81	67.19	
5,556.04				08/23/02	68.68	67.06	
5,556.25				09/11/02	68.47	66.85	
5,556.72				10/23/02	68.00	66.38	
5,556.42				11/22/02	68.30	66.68	
5,557.01				12/03/02	67.71	66.09	
5,557.20				01/09/03	67.52	65.90	
5,557.35				02/12/03	67.37	65.75	
5,557.83				03/26/03	66.89	65.27	
5,557.87				04/02/03	66.85	65.23	
5,553.71				05/01/03	71.01	69.39	
5,548.98				06/09/03	75.74	74.12	
5,548.14				07/07/03	76.58	74.96	
5,547.75				08/04/03	76.97	75.35	
5,547.22				09/11/03	77.50	75.88	
5,547.68				10/02/03	77.04	75.42	
5,547.52				11/07/03	77.20	75.58	
5,548.29				12/03/03	76.43	74.81	
5,554.00				01/15/04	70.72	69.10	
5,555.46				02/10/04	69.26	67.64	
5,556.90				03/28/04	67.82	66.20	
5,557.49				04/12/04	67.23	65.61	
5,558.07				05/13/04	66.65	65.03	
5,558.19				06/18/04	66.53	64.91	
5,559.00				07/28/04	65.72	64.10	
5,554.26				08/30/04	70.46	68.84	
5,551.97				09/16/04	72.75	71.13	
5,549.65				10/11/04	75.07	73.45	
					988 B 27 27 08	x 50 5 87	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,624.72	1.62				121.125
5,549.89				11/16/04	74.83	73.21	
5,550.37				12/22/04	74.35	72.73	
5,549.95				01/18/05	74.77	73.15	
5,550.09				02/28/05	74.63	73.01	
5,550.13				03/15/05	74.59	72.97	
5,550.18				04/26/05	74.54	72.92	
5,550.32				05/24/05	74.40	72.78	
5,550.21				06/30/05	74.51	72.89	
5,550.11				07/29/05	74.61	72.99	
5,550.33				09/12/05	74.39	72.77	
5,550.29				12/07/05	74.43	72.81	
5,551.30				03/08/06	73.42	71.80	
5,551.42				06/14/06	73.3	71.68	
5,550.52				07/18/06	74.20	72.58	
5550.52				11/07/06	74.20	72.58	
5552.89				02/27/07	71.83	70.21	
5,552.06				05/02/07	72.66	71.04	
5,552.02				08/14/07	72.7	71.08	
5,552.20				10/10/07	72.52	70.90	
5,554.58				03/26/08	70.14	68.52	
5,555.23				06/24/08	69.49	67.87	
5,555.29				08/26/08	69.43	67.81	
5,555.43				10/14/08	69.29	67.67	
5,555.73				03/10/09	68.99	67.37	
5,556.25				06/24/09	68.47	66.85	
5,555.94				09/10/09	68.78	67.16	
5,556.53				12/11/09	68.19	66.57	
5,557.87				03/11/10	66.85	65.23	
5,557.63				05/11/10	67.09	65.47	
5,557.24				09/29/10	67.48	65.86	
5,557.00				12/21/10	67.72	66.10	
5,557.61				02/28/11	67.11	65.49	
5,557.58				06/21/11	67.14	65.52	
5,557.46				09/20/11	67.26	65.64	
5,557.84				12/21/11	66.88	65.26	
5,557.86				03/27/12	66.86	65.24	
5,557.87				06/28/12	66.85	65.23	
5,557.46				09/27/12	67.26	65.64	
5,557.82				12/28/12	66.9	65.28	
5,559.39				03/28/13	65.33	63.71	
5,559.21				06/27/13	65.51	63.89	
5,559.26				09/27/13	65.46	63.84	
5,559.27				12/20/13	65.45	63.83	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
**************************************	5,623.10	5,624.72	1.62				121.125
5,558.92				03/27/14	65.8	64.18	
5,557.99				06/25/14	66.73	65.11	
5,557.09				09/25/14	67.63	66.01	
5,557.07				12/17/14	67.65	66.03	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,565.78				11/29/99	66.45	65.43	
5,566.93				01/02/00	65.30	64.28	
5,567.03				01/10/00	65.20	64.18	
5,566.83				01/17/00	65.40	64.38	
5,567.13				01/24/00	65.10	64.08	
5,567.33				02/01/00	64.90	63.88	
5,567.13				02/07/00	65.10	64.08	
5,567.43				02/14/00	64.80	63.78	
5,567.63				02/23/00	64.60	63.58	
5,567.73				03/01/00	64.50	63.48	
5,567.83				03/08/00	64.40	63.38	
5,567.70				03/15/00	64.53	63.51	
5,568.03				03/20/00	64.20	63.18	
5,567.93				03/29/00	64.30	63.28	
5,567.63				04/04/00	64.60	63.58	
5,567.83				04/13/00	64.40	63.38	
5,568.03				04/21/00	64.20	63.18	
5,568.23				04/28/00	64.00	62.98	
5,568.13				05/01/00	64.10	63.08	
5,568.53				05/11/00	63.70	62.68	
5,568.23				05/15/00	64.00	62.98	
5,568.53				05/25/00	63.70	62.68	
5,568.61				06/09/00	63.62	62.60	
5,568.69				06/16/00	63.54	62.52	
5,568.45				06/26/00	63.78	62.76	
5,568.61				07/06/00	63.62	62.60	
5,568.61				07/06/00	63.62	62.60	
5,568.49				07/13/00	63.74	62.72	
5,568.55				07/18/00	63.68	62.66	
5,568.65				07/27/00	63.58	62.56	
5,568.73				08/02/00	63.50	62.48	
5,568.77				08/09/00	63.46	62.44	
5,568.76				08/16/00	63.47	62.45	
5,568.95				08/31/00	63.28	62.26	
5,568.49				09/08/00	63.74	62.72	
5,568.67				09/13/00	63.56	62.54	
5,568.96				09/20/00	63.27	62.25	
5,568.93				10/05/00	63.3	62.28	
5,569.34				11/09/00	62.89	61.87	
5,568.79				12/06/00	63.44	62.42	
5,569.11				01/03/01	63.12	62.10	
5,569.75				02/09/01	62.48	61.46	
5,570.34				03/28/01	61.89	60.87	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02		(01///////)	(MARLED)	141
5,570.61	0,001121	0,002120		04/30/01	61.62	60.60	
5,570.70				05/31/01	61.53	60.51	
5,570.88				06/21/01	61.35	60.33	
5,571.02				07/10/01	61.21	60.19	
5,571.70				08/20/01	60.53	59.51	
5,572.12				09/19/01	60.11	59.09	
5,572.08				10/02/01	60.11	59.13	
5,572.78				11/08/01	59.45	58.43	
5,573.27				12/03/01	58.96	57.94	
5,573.47				01/03/02	58.76	57.74	
5,573.93				02/06/02	58.30	57.28	
5,574.75				03/26/02	57.48	56.46	
5,574.26				03/20/02	57.97	56.95	
5,575.39				05/23/02	56.84	55.82	
5,574.84				06/05/02	57.39	56.37	
5,575.33				07/08/02	56.90	55.88	
5,575.79				08/23/02	56.44	55.42	
5,576.08				09/11/02	56.15	55.13	
5,576.30				10/23/02	55.93	54.91	
5,576.35				11/22/02	55.88	54.91	
5,576.54				12/03/02	55.69	54.67	
5,576.96				01/09/03	55.27	54.07	
5,577.11				02/12/03	55.12	54.10	
5,577.61				03/26/03	54.62	53.60	
5,572.80				04/02/03	59.43	58.41	
5,577.89				05/01/03	54.34	53.32	
5,577.91				06/09/03	54.32	53.30	
5,577.53				07/07/03	54.70	53.68	
5,577.50				08/04/03	54.73	53.71	
5,577.71				09/11/03	54.52	53.50	
5,577.31				10/02/03	54.92	53.90	
5,577.33				11/07/03	54.90	53.88	
5,577.34				12/03/03	54.89	53.87	
5,578.24				01/15/04	53.99	52.97	
5,578.38				02/10/04	53.85	52.83	
5,578.69				03/28/04	53.54	52.52	
5,579.15				04/12/04	53.08	52.06	
5,579.47				05/13/04	52.76	51.74	
5,579.53				06/18/04	52.70	51.68	
5,580.17				07/28/04	52.06	51.03	
5,580.20				08/30/04	52.00	51.04	
5,580.26				09/16/04	51.97	50.95	
5,580.20				10/11/04	52.11	51.09	
0,000,12				10/11/07	54.11	51.07	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,579.93				11/16/04	52.30	51.28	
5,580.07				12/22/04	52.16	51.14	
5,579.80				01/18/05	52.43	51.41	
5,580.35				02/28/05	51.88	50.86	
5,580.57				03/15/05	51.66	50.64	
5,580.86				04/26/05	51.37	50.35	
5,581.20				05/24/05	51.03	50.01	
5,581.51				06/30/05	50.72	49.70	
5,581.55				07/29/05	50.68	49.66	
5,581.68				09/12/05	50.55	49.53	
5,581.83				12/07/05	50.4	49.38	
5,564.92				03/08/06	67.31	66.29	
5,582.73				06/13/06	49.50	48.48	
5,582.33				07/18/06	49.90	48.88	
5,582.75				11/07/06	49.48	48.46	
5583.35				02/27/07	48.88	47.86	
5,559.57				05/02/07	72.66	71.64	
5,583.29				08/14/07	48.94	47.92	
5,583.49				10/10/07	48.74	47.72	
5,584.95				03/26/08	47.28	46.26	
5,584.59				06/24/08	47.64	46.62	
5,584.55				08/26/08	47.68	46.66	
5,584.03				10/14/08	48.2	47.18	
5,583.64				03/03/09	48.59	47.57	
5,587.34				06/24/09	44.89	43.87	
5,582.90				09/10/09	49.33	48.31	
5,583.27				12/11/09	48.96	47.94	
5,583.63				03/11/10	48.6	47.58	
5,583.82				05/11/10	48.41	47.39	
5,583.51				09/29/10	48.72	47.70	
5,582.86				12/21/10	49.37	48.35	
5,582.60				02/28/11	49.63	48.61	
5,590.00				06/21/11	42.23	41.21	
5,582.70				09/20/11	49.53	48.51	
5,583.05				12/21/11	49.18	48.16	
5,581.93				03/27/12	50.30	49.28	
5,582.03				06/28/12	50.20	49.18	
5,582.08				09/27/12	50.15	49.13	
5,581.94				12/28/12	50.29	49.27	
5,581.52				03/28/13	50.71	49.69	
5,580.88				06/27/13	51.35	50.33	
5,580.58				09/27/13	51.65	50.63	
5,580.38				12/20/13	51.85	50.83	
21							

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
,	5,631.21	5,632.23	1.02				141
5,579.62				03/27/14	52.61	51.59	
5,578.52				06/25/14	53.71	52.69	
5,577.59				09/25/14	54.64	53.62	
5,577.40				12/17/14	54.83	53.81	

Measuring Measured Total	
Water Land Point Depth to Depth to	Total
Elevation Surface Elevation Length Of Date Of Water Water De	epth Of
	Well
	114.5
5,512.145 05/25/00 101.34 100.16	-
5,518.985 06/09/00 94.50 93.32	
5,512.145 06/16/00 101.34 100.16	
5,517.465 06/26/00 96.02 94.84	
5,520.145 07/06/00 93.34 92.16	
5,521.435 07/13/00 92.05 90.87	
5,522.005 07/18/00 91.48 90.30	
5,522.945 07/27/00 90.54 89.36	
5,523.485 08/02/00 90.00 88.82	
5,523.845 08/09/00 89.64 88.46	
5,523.885 08/15/00 89.60 88.42	
5,524.555 09/01/00 88.93 87.75	
5,513.235 09/08/00 100.25 99.07	
5,516.665 09/13/00 96.82 95.64	
5,519.085 09/20/00 94.40 93.22	
5,522.165 10/05/00 91.32 90.14	
5,524.665 11/09/00 88.82 87.64	
5,518.545 12/06/00 94.94 93.76	
5,527.695 01/03/01 85.79 84.61	
5,529.085 02/09/01 84.40 83.22	
5,529.535 03/27/01 83.95 82.77	
5,530.235 04/30/01 83.25 82.07	
5,530.265 05/31/01 83.22 82.04	
5,534.405 06/22/01 79.08 77.90	
5,533.145 07/10/01 80.34 79.16	
5,534.035 08/20/01 79.45 78.27	
5,534.465 09/19/01 79.02 77.84	
5,533.285 10/02/01 80.20 79.02	
5,533.865 11/08/01 79.62 78.44	
5,534.275 12/03/01 79.21 78.03	
5,534.715 01/03/02 78.77 77.59	
5,535.435 02/06/02 78.05 76.87	
5,536.445 03/26/02 77.04 75.86	
5,536.405 04/09/02 77.08 75.90	
5,537.335 05/23/02 76.15 74.97	
5,537.325 06/05/02 76.16 74.98	
5,537.975 07/08/02 75.51 74.33	
5,538.825 08/23/02 74.66 73.48	
5,539.275 09/11/02 74.21 73.03	
5,539.765 10/23/02 73.72 72.54	
5,540.205 11/22/02 73.28 72.10	
5,540.295 12/03/02 73.19 72.01	
5,540.795 01/09/03 72.69 71.51	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,540.985				02/12/03	72.50	71.32	
5,541.675				03/26/03	71.81	70.63	
5,541.765				04/02/03	71.72	70.54	
5,541.885				05/01/03	71.60	70.42	
5,542.025				06/09/03	71.46	70.28	
5,541.925				07/07/03	71.56	70.38	
5,541.885				08/04/03	71.60	70.42	
5,541.825				09/11/03	71.66	70.48	
5,541.885				10/02/03	71.60	70.42	
5,541.995				11/07/03	71.49	70.31	
5,542.005				12/03/03	71.48	70.30	
5,542.555				01/15/04	70.93	69.75	
5,542.705				02/10/04	70.78	69.60	
5,543.225				03/28/04	70.26	69.08	
5,543.555				04/12/04	69.93	68.75	
5,543.865				05/13/04	69.62	68.44	
5,543.915				06/18/04	69.57	68.39	
5,544.655				07/28/04	68.83	67.65	
5,544.795				08/30/04	68.69	67.51	
5,544.845				09/16/04	68.64	67.46	
5,544.705				10/11/04	68.78	67.60	
5,544.525				11/16/04	68.96	67.78	
5,544.625				12/22/04	68.86	67.68	
5,544.305				01/18/05	69.18	68.00	
5,544.585				02/28/05	68.90	67.72	
5,544.685				03/15/05	68.80	67.62	
5,544.675				04/26/05	68.81	67.63	
5,544.785				05/24/05	68.70	67.52	
5,544.795				06/30/05	68.69	67.51	
5,544.775				07/29/05	68.71	67.53	
5,545.005				09/12/05	68.48	67.30	
5,545.225				12/07/05	68.26	67.08	
5,545.735				03/08/06	67.75	66.57	
5,545.785				06/14/06	67.70	66.52	
5,545.855				07/18/06	67.63	66.45	
5,545.805				11/07/06	67.68	66.50	
5,545.805 5546.675				02/27/07	66.81	65.63	
5,546.535				02/2//07	66.95	65.03 65.77	
5,547.155				08/15/07	66.33	65.15	
5,547.215				10/10/07	66.27	65.09	
5,548.305				03/26/08	65.18	64.00	
5,548.865				06/24/08	64.62	63.44	
5,549.235				08/26/08	64.25	63.07	

Water Levels	and Data over Time
White Mesa	Mill - Well TW4-4

White Mesa Mill - Well TW4-4										
					Total or					
		Measuring			Measured	Total				
Water	Land	Point			Depth to	Depth to	Total			
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of			
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well			
	5,612.301	5,613.485	1.184				114.5			
5,549.305				10/14/08	64.18	63.00				
5,549.725				03/03/09	63.76	62.58				
5,549.905				06/24/09	63.58	62.40				
5,549.695				09/10/09	63.79	62.61				
5,549.865				12/11/09	63.62	62.44				
5,545.60				03/11/10	67.89	66.71				
5,530.88				05/11/10	82.61	81.43				
5,545.24				09/29/10	68.25	67.07				
5,533.66				12/21/10	79.83	78.65				
5,544.44				02/28/11	69.05	67.87				
5,543.73				06/21/11	69.76	68.58				
5,540.48				09/20/11	73.01	71.83				
5,544.36				12/21/11	69.13	67.95				
5,543.48				03/27/12	70.01	68.83				
5,543.49				06/28/12	70.00	68.82				
5,543.36				09/27/12	70.13	68.95				
5,543.51				12/28/12	69.98	68.80				
5,543.49				03/28/13	70.00	68.82				
5,543.36				06/27/13	70.13	68.95				
5,544.59				09/27/13	68.90	67.72				
5,543.33				12/20/13	70.16	68.98				
5,544.11				03/27/14	69.38	68.20				
5,543.61				06/25/14	69.88	68.70				
5,543.67				09/25/14	69.82	68.64				
5,543.69				12/17/14	69.80	68.62				

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,579.30				01/02/00	61.40	59.45	
5,579.60				01/10/00	61.10	59.15	
5,579.35				01/17/00	61.35	59.40	
5,579.60				01/24/00	61.10	59.15	
5,579.50				02/01/00	61.20	59.25	
5,579.50				02/07/00	61.20	59.25	
5,579.90				02/14/00	60.80	58.85	
5,579.90				02/23/00	60.80	58.85	
5,580.20				03/01/00	60.50	58.55	
5,580.00				03/08/00	60.70	58.75	
5,580.04				03/15/00	60.66	58.71	
5,580.70				03/20/00	60.00	58.05	
5,580.30				03/29/00	60.40	58.45	
5,580.00				04/04/00	60.70	58.75	
5,580.20				04/13/00	60.50	58.55	
5,580.40				04/21/00	60.30	58.35	
5,580.50				04/28/00	60.20	58.25	
5,580.50				05/01/00	60.20	58.25	
5,580.90				05/11/00	59.80	57.85	
5,580.50				05/15/00	60.20	58.25	
5,580.75				05/25/00	59.95	58.00	
5,580.80				06/09/00	59.90	57.95	
5,580.92				06/16/00	59.78	57.83	
5,580.80				06/26/00	59.90	57.95	
5,580.90				07/06/00	59.80	57.85	
5,581.05				07/13/00	59.65	57.70	
5,580.90				07/18/00	59.80	57.85	
5,581.05				07/27/00	59.65	57.70	
5,581.06				08/02/00	59.64	57.69	
5,581.08				08/09/00	59.62	57.67	
5,581.07				08/16/00	59.63	57.68	
5,581.25				08/31/00	59.45	57.50	
5,581.32				09/08/00	59.38	57.43	
5,581.34				09/13/00	59.36	57.41	
5,581.41				09/20/00	59.29	57.34	
5,581.37				10/05/00	59.33	57.38	
5,581.66				11/09/00	59.04	57.09	
5,581.63				12/06/00	59.07	57.12	
5,581.92				01/03/01	58.78	56.83	
5,582.20				02/09/01	58.50	56.55	
5,582.54				03/28/01	58.16	56.21	
5,582.72				04/30/01	57.98	56.03	
5,582.72				05/31/01	57.98	56.03	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,582.81				06/22/01	57.89	55.94	
5,582.92				07/10/01	57.78	55.83	
5,583.17				08/20/01	57.53	55.58	
5,583.28				09/19/01	57.42	55.47	
5,583.36				10/02/01	57.34	55.39	
5,583.49				11/08/01	57.21	55.26	
5,583.84				12/03/01	56.86	54.91	
5,583.79				01/03/02	56.91	54.96	
5,583.96				02/06/02	56.74	54.79	
5,584.39				03/26/02	56.31	54.36	
5,584.12				04/09/02	56.58	54.63	
5,584.55				05/23/02	56.15	54.20	
5,584.42				06/05/02	56.28	54.33	
5,583.65				07/08/02	57.05	55.10	
5,584.90				08/23/02	55.80	53.85	
5,585.02				09/11/02	55.68	53.73	
5,585.20				10/23/02	55.50	53.55	
5,585.15				11/22/02	55.55	53.60	
5,585.42				12/03/02	55.28	53.33	
5,585.65				01/09/03	55.05	53.10	
5,585.65				02/12/03	55.05	53.10	
5,585.92				03/26/03	54.78	52.83	
5,586.22				04/02/03	54.48	52.53	
5,586.01				05/01/03	54.69	52.74	
5,584.81				06/09/03	55.89	53.94	
5,584.34				07/07/03	56.36	54.41	
5,584.40				08/04/03	56.30	54.35	
5,583.88				09/11/03	56.82	54.87	
5,583.57				10/02/03	57.13	55.18	
5,583.39				11/07/03	57.31	55.36	
5,583.97				12/03/03	56.73	54.78	
5,585.28				01/15/04	55.42	53.47	
5,585.50				02/10/04	55.20	53.25	
5,585.87				03/28/04	54.83	52.88	
5,586.20				04/12/04	54.50	52.55	
5,586.45				05/13/04	54.25	52.30	
5,586.50				06/18/04	54.20	52.25	
5,587.13				07/28/04	53.57	51.62	
5,586.22				08/30/04	54.48	52.53	
5,585.69				09/16/04	55.01	53.06	
5,585.17				10/11/04	55.53	53.58	
5,584.64				11/16/04	56.06	54.11	
5,584.77				12/22/04	55.93	53.98	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,584.65				01/18/05	56.05	54.10	
5,584.98				02/28/05	55.72	53.77	
5,585.15				03/15/05	55.55	53.60	
5,586.25				04/26/05	54.45	52.50	
5,586.79				05/24/05	53.91	51.96	
5,586.52				06/30/05	54.18	52.23	
5,586.03				07/29/05	54.67	52.72	
5,586.05				09/12/05	54.65	52.70	
5,585.80				12/07/05	54.90	52.95	
5,587.06				03/08/06	53.64	51.69	
5,585.90				06/13/06	54.80	52.85	
5,585.32				07/18/06	55.38	53.43	
5,585.35				11/07/06	55.35	53.40	
5585.81				02/27/07	54.89	52.94	
5,585.20				05/02/07	55.50	53.55	
5,586.66				08/14/07	54.04	52.09	
5,586.80				10/10/07	53.90	51.95	
5,588.48				03/26/08	52.22	50.27	
5,586.51				06/24/08	54.19	52.24	
5,586.45				08/26/08	54.25	52.30	
5,585.40				10/14/08	55.3	53.35	
5,584.80				03/03/09	55.9	53.95	
5,584.73				06/24/09	55.97	54.02	
5,584.36				09/10/09	56.34	54.39	
5,585.02				12/11/09	55.68	53.73	
5,585.66				03/11/10	55.04	53.09	
5,584.86				05/11/10	55.84	53.89	
5,584.55				09/29/10	56.15	54.20	
5,584.17				12/21/10	56.53	54.58	
5,583.55				02/28/11	57.15	55.20	
5,584.72				06/21/11	55.98	54.03	
5,584.62				09/20/11	56.08	54.13	
5,585.04				11/21/11	55.66	53.71	
5,583.89				03/27/12	56.81	54.86	
5,583.92				06/28/12	56.78	54.83	
5,583.89				09/27/12	56.81	54.86	
5,583.89				12/28/12	56.81	54.86	
5,582.88				03/28/13	57.82	55.87	
5,582.05				06/27/13	58.65	56.70	
5,581.35				09/27/13	59.35	57.40	
5,580.52				12/20/13	60.18	58.23	
5,579.44				03/27/14	61.26	59.31	
5,578.11				06/25/14	62.59	60.64	

	Total or						
Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Bisor (L)	Date Of Monitoring	Measured Depth to Water (blw MP)	Total Depth to Water	Total Depth Of Well
(2)	. ,			montoring			
	5,638.75	5,640.70	1.95				121.75

Water Levels and Data over Time
White Mesa Mill - Well TW4-6
Total or

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,522.28				05/25/00	86.50	85.05	
5,521.51				06/09/00	87.27	85.82	
5,522.35				06/16/00	86.43	84.98	
5,522.14				06/26/00	86.64	85.19	
5,522.25				07/06/00	86.53	85.08	
5,522.13				07/13/00	86.65	85.20	
5,522.17				07/18/00	86.61	85.16	
5,522.26				07/25/00	86.52	85.07	
5,522.31				08/02/00	86.47	85.02	
5,522.33				08/09/00	86.45	85.00	
5,522.35				08/15/00	86.43	84.98	
5,522.40				08/31/00	86.38	84.93	
5,522.40				09/08/00	86.38	84.93	
5,522.45				09/13/00	86.33	84.88	
5,522.53				09/20/00	86.25	84.80	
5,522.39				10/05/00	86.39	84.94	
5,522.42				11/09/00	86.36	84.91	
5,522.29				12/06/00	86.49	85.04	
5,522.63				01/03/01	86.15	84.70	
5,522.72				02/09/01	86.06	84.61	
5,522.90				03/26/01	85.88	84.43	
5,522.70				04/30/01	86.08	84.63	
5,522.89				05/31/01	85.89	84.44	
5,522.88				06/20/01	85.90	84.45	
5,522.96				07/10/01	85.82	84.37	
5,523.10				08/20/01	85.68	84.23	
5,523.23				09/19/01	85.55	84.10	
5,523.21				10/02/01	85.57	84.12	
5,523.25				11/08/01	85.53	84.08	
5,523.46				12/03/01	85.32	83.87	
5,523.36				01/03/02	85.42	83.97	
5,523.50				02/06/02	85.28	83.83	
5,523.94				03/26/02	84.84	83.39	
5,523.75				04/09/02	85.03	83.58	
5,524.23				05/23/02	84.55	83.10	
5,523.98				06/05/02	84.80	83.35	
5,524.31				07/08/02	84.47	83.02	
5,524.36				08/23/02	84.42	82.97	
5,524.49				09/11/02	84.29	82.84	
5,524.71				10/23/02	84.07	82.62	
5,524.60				11/22/02	84.18	82.73	
5,524.94				12/03/02	83.84	82.39	
5,525.10				01/09/03	83.68	82.23	

÷.

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450		((98.55
5,525.15				02/12/03	83.63	82.18	
5,525.35				03/26/03	83.43	81.98	
5,525.68				04/02/03	83.10	81.65	
5,525.74				05/01/03	83.04	81.59	
5,525.98				06/09/03	82.80	81.35	
5,526.04				07/07/03	82.74	81.29	
5,526.07				08/04/03	82.71	81.26	
5,526.42				09/11/03	82.36	80.91	
5,526.30				10/02/03	82.48	81.03	
5,526.41				11/07/03	82.37	80.92	
5,526.46				12/03/03	82.32	80.87	
5,526.83				01/15/04	81.95	80.50	
5,526.81				02/10/04	81.97	80.50	
5,527.14				03/28/04	81.64	80.19	
5,527.39				04/12/04	81.39	79.94	
5,527.64				05/13/04	81.14	79.69	
5,527.70				06/18/04	81.08	79.63	
5,528.16				07/28/04	80.62	79.03	
5,528.30				08/30/04	80.02	79.03	
5,528.50				08/30/04 09/16/04	80.48	79.03	
5,528.71				10/11/04	80.20	78.62	
				11/16/04	80.07		
5,528.74 5,529.20				12/22/04	80.04 79.58	78.59	
				01/18/05	79.38	78.13	
5,528.92 5,529.51				02/28/05	79.80	78.41	
5,529.51					79.27 79.04	77.82	
				03/15/05	79.04	77.59	
5,529.96				04/26/05		77.37	
5,530.15				05/24/05	78.63	77.18 76.98	
5,530.35				06/30/05	78.43		
5,530.47				07/29/05	78.31	76.86	
5,530.95				09/12/05	77.83	76.38	
5,531.50				12/07/05	77.28	75.83	
5,532.43				03/08/06	76.35	74.90	
5,533.49				06/13/06	75.29	73.84	
5,532.58				07/18/06	76.20	74.75	
5,532.88				11/07/06	75.90	74.45	
5534.09				02/27/07	74.69	73.24	
5,534.04				05/02/07	74.74	73.29	
5,534.43				08/14/07	74.35	72.90	
5,554.54				10/10/07	54.24	52.79	
5,535.40				03/26/08	73.38	71.93	
5,535.55				06/24/08	73.23	71.78	
5,535.90				08/26/08	72.88	71.43	

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,535.87				10/14/08	72.91	71.46	
5,536.42				03/10/09	72.36	70.91	
5,536.71				06/24/09	72.07	70.62	
5,536.83				09/10/09	71.95	70.50	
5,537.35				12/11/09	71.43	69.98	
5,537.93				03/11/10	70.85	69.40	
5,538.14				05/11/10	70.64	69.19	
5,538.03				09/29/10	70.75	69.30	
5,538.04				12/21/10	70.74	69.29	
5,537.98				02/28/11	70.8	69.35	
5,538.46				06/21/11	70.32	68.87	
5,538.37				09/20/11	70.41	68.96	
5,538.87				12/21/11	69.91	68.46	
5,538.73				03/27/12	70.05	68.60	
5,538.80				06/28/12	69.98	68.53	
5,539.04				09/27/12	69.74	68.29	
5,538.74				12/28/12	70.04	68.59	
5,539.53				03/28/13	69.25	67.80	
5,539.46				06/27/13	69.32	67.87	
5,539.62				09/27/13	69.16	67.71	
5,539.85				12/20/13	68.93	67.48	
5,539.65				03/27/14	69.13	67.68	
5,538.85				06/25/14	69.93	68.48	
5,538.69				09/25/14	70.09	68.64	
5,538.71				12/17/14	70.07	68.62	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
4	5,619.87	5,621.07	1.20				119.8
5,552.37				11/29/99	68.70	67.50	
5,553.57				01/02/00	67.50	66.30	
5,553.87				01/10/00	67.20	66.00	
5,553.72				01/17/00	67.35	66.15	
5,553.97				01/24/00	67.10	65.90	
5,553.87				02/01/00	67.20	66.00	
5,553.87				02/07/00	67.20	66.00	
5,554.17				02/14/00	66.90	65.70	
5,554.27				02/23/00	66.80	65.60	
5,554.37				03/01/00	66.70	65.50	
5,554.37				03/08/00	66.70	65.50	
5,554.27				03/15/00	66.80	65.60	
5,554.77				03/20/00	66.30	65.10	
5,554.57				03/29/00	66.50	65.30	
5,554.27				04/04/00	66.80	65.60	
5,554.57				04/13/00	66.50	65.30	
5,554.77				04/21/00	66.30	65.10	
5,554.87				04/28/00	66.20	65.00	
5,554.87				05/01/00	66.20	65.00	
5,555.27				05/11/00	65.80	64.60	
5,554.97				05/15/00	66.10	64.90	
5,555.27				05/25/00	65.80	64.60	
5,555.33				06/09/00	65.74	64.54	
5,555.45				06/16/00	65.62	64.42	
5,555.22				06/26/00	65.85	64.65	
5,555.45				07/06/00	65.62	64.42	
5,555.40				07/13/00	65.67	64.47	
5,555.45				07/18/00	65.62	64.42	
5,555.59				07/27/00	65.48	64.28	
5,555.65				08/02/00	65.42	64.22	
5,555.70				08/09/00	65.37	64.17	
5,555.74				08/16/00	65.33	64.13	
5,555.96				08/31/00	65.11	63.91	
5,555.87				09/08/00	65.20	64.00	
5,555.95				09/13/00	65.12	63.92	
5,556.05				09/20/00	65.02	63.82	
5,556.06				10/05/00	65.01	63.81	
5,556.17				10/12/00	64.90	63.70	
5,556.20				10/19/00	64.87	63.67	
5,556.22				10/23/00	64.85	63.65	
5,556.36				11/09/00	64.71	63.51	
5,556.42				11/14/00	64.65	63.45	
5,556.45				11/30/00	64.62	63.42	
,							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,556.15				12/06/00	64.92	63.72	
5,556.89				01/14/01	64.18	62.98	
5,557.07				02/09/01	64.00	62.80	
5,557.62				03/29/01	63.45	62.25	
5,557.51				04/30/01	63.56	62.36	
5,557.77				05/31/01	63.30	62.10	
5,557.84				06/21/01	63.23	62.03	
5,557.98				07/10/01	63.09	61.89	
5,558.33				08/20/01	62.74	61.54	
5,558.57				09/19/01	62.50	61.30	
5,558.53				10/02/01	62.54	61.34	
5,558.62				11/08/01	62.45	61.25	
5,559.03				12/03/01	62.04	60.84	
5,559.08				01/03/02	61.99	60.79	
5,559.32				02/06/02	61.75	60.55	
5,559.63				03/26/02	61.44	60.24	
5,559.55				04/09/02	61.52	60.32	
5,560.06				05/23/02	61.01	59.81	
5,559.91				06/05/02	61.16	59.96	
5,560.09				07/08/02	60.98	59.78	
5,560.01				08/23/02	61.06	59.86	
5,560.23				09/11/02	60.84	59.64	
5,560.43				10/23/02	60.64	59.44	
5,560.39				11/22/02	60.68	59.48	
5,560.61				12/03/02	60.46	59.26	
5,560.89				01/09/03	60.18	58.98	
5,560.94				02/12/03	60.13	58.93	
5,561.28				03/26/03	59.79	58.59	
5,561.35				04/02/03	59.72	58.52	
5,546.20				05/01/03	74.87	73.67	
5,539.47				06/09/03	81.60	80.40	
5,541.87				07/07/03	79.20	78.00	
5,542.12				08/04/03	78.95	77.75	
5,541.91				09/11/03	79.16	77.96	
5,544.62				10/02/03	76.45	75.25	
5,542.67				11/07/03	78.40	77.20	
5,549.96				12/03/03	71.11	69.91	
5,557.17				01/15/04	63.90	62.70	
5,558.65				02/10/04	62.42	61.22	
5,559.90				03/28/04	61.17	59.97	
5,560.36				04/12/04	60.71	59.51	
5,560.87				05/13/04	60.20	59.00	
5,560.95				06/18/04	60.12	58.92	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
*	5,619.87	5,621.07	1.20				119.8
5,561.64				07/28/04	59.43	58.23	
5,543.00				08/30/04	78.07	76.87	
5,541.91				09/16/04	79.16	77.96	
5,540.08				10/11/04	80.99	79.79	
5,546.92				11/16/04	74.15	72.95	
5,546.97				12/22/04	74.10	72.90	
5,546.51				01/18/05	74.56	73.36	
5,546.66				02/28/05	74.41	73.21	
5,546.81				03/15/05	74.26	73.06	
5,548.19				04/26/05	72.88	71.68	
5,547.11				05/24/05	73.96	72.76	
5,546.98				06/30/05	74.09	72.89	
5,546.92				07/29/05	74.15	72.95	
5,547.26				09/12/05	73.81	72.61	
5,547.26				12/07/05	73.81	72.61	
5,548.86				03/08/06	72.21	71.01	
5,548.62				06/13/06	72.45	71.25	
5,550.04				07/18/06	71.03	69.83	
5,548.32				11/07/06	72.75	71.55	
5,550.44				02/27/07	70.63	69.43	
5,549.69				05/02/07	71.38	70.18	
5,549.97				08/14/07	71.10	69.90	
5,550.30				10/10/07	70.77	69.57	
5,551.92				03/26/08	69.15	67.95	
5,552.94				06/24/08	68.13	66.93	
5,552.34				08/26/08	68.73	67.53	
5,552.61				10/14/08	68.46	67.26	
5,552.81				03/10/09	68.26	67.06	
5,553.11				06/24/09	67.96	66.76	
5,552.55				09/10/09	68.52	67.32	
5,553.06				12/11/09	68.01	66.81	
5,554.64				03/11/10	66.43	65.23	
5,554.20				05/11/10	66.87	65.67	
5,553.45				09/29/10	67.62	66.42	
5,553.40				12/21/10	67.67	66.47	
5,553.93				02/28/11	67.14	65.94	
5,553.67				06/21/11	67.4	66.20	
5,553.46				09/20/11	67.61	66.41	
5,553.78				12/21/11	67.29	66.09	
5,553.17				03/27/12	67.90	66.70	
5,553.21				06/28/12	67.86	66.66	
5,552.90				09/27/12	68.17	66.97	
5,553.15				12/28/12	67.92	66.72	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,556.23				03/28/13	64.84	63.64	
5,556.04				06/27/13	65.03	63.83	
5,556.09				09/27/13	64.98	63.78	
5,555.80				12/20/13	65.27	64.07	
5,555.40				03/27/14	65.67	64.47	
5,554.20				06/25/14	66.87	65.67	
5,552.96				09/25/14	68.11	66.91	
5,552.62				12/17/14	68.45	67.25	

10

Water Levels	and Data over Time
	Mill - Well TW4-8
	Total or

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,621.40	4.60				126.00
5,546.40				11/29/99	75.00	70.40	
5,546.20				01/02/00	75.20	70.60	
5,546.50				01/10/00	74.90	70.30	
5,546.30				01/17/00	75.10	70.50	
5,546.60				01/24/00	74.80	70.20	
5,546.50				02/01/00	74.90	70.30	
5,546.50				02/07/00	74.90	70.30	
5,546.90				02/14/00	74.50	69.90	
5,546.95				02/23/00	74.45	69.85	
5,547.05				03/01/00	74.35	69.75	
5,547.05				03/08/00	74.35	69.75	
5,547.10				03/15/00	74.30	69.70	
5,547.50				03/20/00	73.90	69.30	
5,547.40				03/29/00	74.00	69.40	
5,547.20				04/04/00	74.20	69.60	
5,547.40				04/13/00	74.00	69.40	
5,547.60				04/21/00	73.80	69.20	
5,547.70				04/28/00	73.70	69.10	
5,547.70				05/01/00	73.70	69.10	
5,548.00				05/11/00	73.40	68.80	
5,547.70				05/15/00	73.70	69.10	
5,547.90				05/25/00	73.50	68.90	
5,547.90				06/09/00	73.50	68.90	
5,548.00				06/16/00	73.40	68.80	
5,547.87				06/26/00	73.53	68.93	
5,547.95				07/06/00	73.45	68.85	
5,547.96				07/13/00	73.44	68.84	
5,547.95				07/18/00	73.45	68.85	
5,548.11				07/27/00	73.29	68.69	
5,548.15				08/02/00	73.25	68.65	
5,548.17				08/09/00	73.23	68.63	
5,548.16				08/15/00	73.24	68.64	
5,548.40				08/31/00	73.00	68.40	
5,548.50				09/08/00	72.90	68.30	
5,548.62				09/13/00	72.78	68.18	
5,548.75				09/20/00	72.65	68.05	
5,548.76				10/05/00	72.64	68.04	
5,549.00				11/09/00	72.40	67.80	
5,548.85				12/06/00	72.55	67.95	
5,549.47				01/03/01	71.93	67.33	
5,549.89				02/09/01	71.51	66.91	
5,550.37				03/27/01	71.03	66.43	
5,550.50				04/30/01	70.90	66.30	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,621.40	4.60				126.00
5,550.68				05/31/01	70.72	66.12	
5,550.68				06/20/01	70.72	66.12	
5,551.02				07/10/01	70.38	65.78	
5,551.32				08/20/01	70.08	65.48	
5,551.49				09/19/01	69.91	65.31	
5,551.64				10/02/01	69.76	65.16	
5,551.81				11/08/01	69.59	64.99	
5,552.22				12/03/01	69.18	64.58	
5,552.16				01/03/02	69.24	64.64	
5,552.38				02/06/02	69.02	64.42	
5,552.85				03/26/02	68.55	63.95	
5,552.83				04/09/02	68.57	63.97	
5,553.20				05/23/02	68.20	63.60	
5,553.16				06/05/02	68.24	63.64	
5,553.32				07/08/02	68.08	63.48	
5,553.49				08/23/02	67.91	63.31	
5,553.69				09/11/02	67.71	63.11	
5,554.09				10/23/02	67.31	62.71	
5,554.02				11/22/02	67.38	62.78	
5,554.23				12/03/02	67.17	62.57	
5,554.43				01/09/03	66.97	62.37	
5,554.42				02/12/03	66.98	62.38	
5,554.71				03/26/03	66.69	62.09	
5,554.83				04/02/03	66.57	61.97	
5,552.21				05/01/03	69.19	64.59	
5,547.93				06/09/03	73.47	68.87	
5,546.97				07/07/03	74.43	69.83	
5,546.58				08/04/03	74.82	70.22	
5,546.24				09/11/03	75.16	70.56	
5,546.38				10/02/03	75.02	70.42	
5,546.40				11/07/03	75.00	70.40	
5,546.59				12/03/03	74.81	70.21	
5,551.29				01/15/04	70.11	65.51	
5,552.69				02/10/04	68.71	64.11	
5,554.06				03/28/04	67.34	62.74	
5,554.52				04/12/04	66.88	62.28	
5,555.06				05/13/04	66.34	61.74	
5,555.11				06/18/04	66.29	61.69	
5,555.88				07/28/04	65.52	60.92	
5,552.97				08/30/04	68.43	63.83	
5,550.65				09/16/04	70.75	66.15	
5,548.40				10/11/04	73.00	68.40	
5,548.40 5,548.28				11/16/04	73.00	68.52	
3,340.20				11/10/04	13.12	00.32	

		VV II	ine iviesa ivi	iiii - vveii 1 v			
Water Elevation (WL)	Land Surface (LSD) 5,616.80	Measuring Point Elevation (MP) 5,621.40	Length Of Riser (L) 4.60	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 126.00
5,548.80	.,	•,•===		12/22/04	72.60	68.00	
5,548.43				01/18/05	72.97	68.37	
5,548.61				02/28/05	72.79	68.19	
5,548.64				03/15/05	72.76	68.16	
5,548.65				04/26/05	72.75	68.15	
5,548.85				05/24/05	72.55	67.95	
5,548.73				06/30/05	72.67	68.07	
5,548.62				07/29/05	72.78	68.18	
5,548.80				09/12/05	72.60	68.00	
5,548.71				12/07/05	72.69	68.09	
5,549.72				03/08/06	71.68	67.08	
5,549.72				06/13/06	71.08	67.10	
5,549.70				07/18/06	71.70	67.10	
5,549.65				11/07/06	71.75	67.15	
5,551.11				02/27/07	70.29	65.69	
5,550.20				05/02/07	70.29	66.60	
						66.21	
5,550.59				08/14/07	70.81		
5,550.76				10/10/07	70.64	66.04	
5,551.95				03/26/08	69.45	64.85	
5,552.36				06/24/08	69.04	64.44	
5,552.50				08/26/08	68.9	64.30	
5,552.56				10/14/08	68.84	64.24	
5,552.91				03/03/09	68.49	63.89	×-
5,553.27				06/24/09	68.13	63.53	
5,553.12				09/10/09	68.28	63.68	
5,553.63				12/11/09	67.77	63.17	
5,554.65				03/11/10	66.75	62.15	
5,554.57				05/11/10	66.83	62.23	
5,554.34				09/29/10	67.06	62.46	
5,554.09				12/21/10	67.31	62.71	
5,554.50				02/28/11	66.9	62.30	
5,554.79				06/21/11	66.61	62.01	
5,554.63				09/20/11	66.77	62.17	
5,555.01				12/21/11	66.39	61.79	
5,554.85				03/27/12	66.55	61.95	
5,554.90				06/28/12	66.50	61.90	
5,554.85				09/27/12	66.55	61.95	
5,554.86				12/28/12	66.54	61.94	
5,556.48				03/28/13	64.92	60.32	
5,556.35				06/27/13	65.05	60.45	
5,556.60				09/27/13	64.8	60.20	
5,556.56				12/20/13	64.84	60.24	

ing		Measured		
8				
A		Depth to	Total Depth	Total
on Length Of	Date Of	Water	to Water	Depth Of
Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
4.60				126.00
	06/25/14	65.84	61.24	
	09/25/14	66.58	61.98	
	12/17/14	66.45	61.85	
ic)	ion Length Of) Riser (L)	ion Length Of Riser (L) Date Of Monitoring 40 4.60 06/25/14 09/25/14 09/25/14	ion Length Of Riser (L) Date Of Monitoring Water (blw.MP) 40 4.60 06/25/14 65.84 09/25/14	ion Length Of Riser (L) Date Of Monitoring Water (blw.MP) to Water (blw.LSD) 40 4.60 06/25/14 65.84 61.24 09/25/14 66.58 61.98 61.98

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,577.09				12/20/99	60.50	59.02	
5,577.09				01/02/00	60.50	59.02	
5,577.29				01/10/00	60.30	58.82	
5,577.09				01/17/00	60.50	59.02	
5,577.39				01/24/00	60.20	58.72	
5,577.29				02/01/00	60.30	58.82	
5,577.19				02/07/00	60.40	58.92	
5,577.69				02/14/00	59.90	58.42	
5,577.69				02/23/00	59.90	58.42	
5,577.79				03/01/00	59.80	58.32	
5,577.79				03/08/00	59.80	58.32	
5,577.89				03/15/00	59.70	58.22	
5,568.49				03/20/00	69.10	67.62	
5,578.14				03/29/00	59.45	57.97	
5,577.84				04/04/00	59.75	58.27	
5,578.04				04/13/00	59.55	58.07	
5,578.24				04/21/00	59.35	57.87	
5,578.39				04/28/00	59.20	57.72	
5,578.39				05/01/00	59.20	57.72	
5,578.79				05/11/00	58.80	57.32	
5,578.39				05/15/00	59.20	57.72	
5,578.79				05/25/00	58.80	57.32	
5,578.81				06/09/00	58.78	57.30	
5,578.89				06/16/00	58.70	57.22	
5,578.74				06/26/00	58.85	57.37	
5,578.86				07/06/00	58.73	57.25	
5,578.87				07/13/00	58.72	57.24	
5,578.84				07/18/00	58.75	57.27	
5,579.03				07/27/00	58.56	57.08	
5,579.03				08/02/00	58.56	57.08	
5,579.05				08/09/00	58.54	57.06	
5,579.04				08/15/00	58.55	57.07	
5,579.25				08/31/00	58.34	56.86	
5,579.35				09/08/00	58.24	56.76	
5,579.40				09/13/00	58.19	56.71	
5,579.46				09/20/00	58.13	56.65	
5,579.44				10/05/00	58.15	56.67	
5,579.79				11/09/00	57.80	56.32	
5,579.73				12/06/00	57.86	56.38	
5,580.01				01/03/01	57.58	56.10	
5,580.30				02/09/01	57.29	55.81	
5,580.66				03/27/01	56.93	55.45	
5,580.75				04/30/01	56.84	55.36	
10 M							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,581.04				05/31/01	56.55	55.07	
5,581.12				06/21/01	56.47	54.99	
5,581.15				07/10/01	56.44	54.96	
5,581.51				08/20/01	56.08	54.60	
5,581.70				09/19/01	55.89	54.41	
5,581.61				10/02/01	55.98	54.50	
5,581.83				11/08/01	55.76	54.28	
5,582.17				12/03/01	55.42	53.94	
5,582.21				01/03/02	55.38	53.90	
5,582.57				02/06/02	55.02	53.54	
5,583.12				03/26/02	54.47	52.99	
5,582.77				04/09/02	54.82	53.34	
5,583.21				05/23/02	54.38	52.90	
5,582.94				06/05/02	54.65	53.17	
5,582.71				07/08/02	54.88	53.40	
5,583.67				08/23/02	53.92	52.44	
5,583.82				09/11/02	53.77	52.29	
5,584.01				10/23/02	53.58	52.10	
5,583.88				11/22/02	53.71	52.23	
5,583.81				12/03/02	53.78	52.30	
5,584.28				01/09/03	53.31	51.83	
5,584.41				02/12/03	53.18	51.70	
5,584.68				03/26/03	52.91	51.43	
5,584.49				04/02/03	53.10	51.62	
5,584.51				05/01/03	53.08	51.60	
5,583.59				06/09/03	54.00	52.52	
5,582.96				07/07/03	54.63	53.15	
5,582.98				08/04/03	54.61	53.13	
5,582.57				09/11/03	55.02	53.54	
5,582.25				10/02/03	55.34	53.86	
5,582.09				11/07/03	55.50	54.02	
5,582.48				12/03/03	55.11	53.63	
5,583.69				01/15/04	53.90	52.42	
5,583.89				02/10/04	53.70	52.22	
5,584.30				03/28/04	53.29	51.81	
5,584.59				04/12/04	53.00	51.52	
5,584.87				05/13/04	52.72	51.24	
5,584.96				06/18/04	52.63	51.15	
5,585.50				07/28/04	52.09	50.61	
5,584.81				08/30/04	52.78	51.30	
5,584.40				09/16/04	53.19	51.71	
5,583.91				10/11/04	53.68	52.20	
5,583.39				11/16/04	54.20	52.72	
N-5							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)		(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,583.54				12/22/04	54.05	52.57	
5,583.34				01/18/05	54.25	52.77	
5,583.66				02/28/05	53.93	52.45	
5,583.87				03/15/05	53.72	52.24	
5,584.74				04/26/05	52.85	51.37	
5,585.26				05/24/05	52.33	50.85	
5,585.06				06/30/05	52.53	51.05	
5,584.67				07/29/05	52.92	51.44	
5,584.75				09/12/05	52.84	51.36	
5,584.51				12/07/05	53.08	51.60	
5,585.74				03/08/06	51.85	50.37	
5,584.74				06/13/06	52.85	51.37	
5,584.26				07/18/06	53.33	51.85	
5,584.21				11/07/06	53.38	51.90	
5,584.67				02/27/07	52.92	51.44	
5,584.06				05/02/07	53.53	52.05	
5,585.33				08/14/07	52.26	50.78	
5,585.42				10/10/07	52.17	50.69	
5,587.01				03/26/08	50.58	49.10	
5,585.44				06/24/08	52.15	50.67	
5,585.23				08/26/08	52.36	50.88	
5,584.42				10/14/08	53.17	51.69	
5,583.59				03/03/09	54.00	52.52	
5,583.35				06/24/09	54.24	52.76	
5,582.91				09/10/09	54.68	53.20	
5,583.43				12/11/09	54.16	52.68	
5,584.00				03/11/10	53.59	52.11	
5,583.27				05/11/10	54.32	52.84	
5,582.92				09/29/10	54.67	53.19	
5,583.08				12/21/10	54.51	53.03	
5,582.63				02/28/11	54.96	53.48	
5,583.62				06/21/11	53.97	52.49	
5,583.52				09/20/11	54.07	52.59	
5,583.91				12/21/11	53.68	52.20	
5,582.84				03/27/12	54.75	53.27	
5,582.84				06/28/12	54.75	53.27	
5,582.92				09/27/12	54.67	53.19	
5,582.84				12/28/12	54.75	53.27	
5,581.97				03/28/13	55.62	54.14	
5,581.19				06/27/13	56.40	54.92	
5,580.50				09/27/13	57.09	55.61	
5,579.73				12/20/13	57.86	56.38	
5,578.61				03/27/14	58.98	57.50	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,636.11	5,637.59	1.48				121.33
5,577.24				06/25/14	60.35	58.87	
5,576.24				09/25/14	61.35	59.87	
5,576.44				12/17/14	61.15	59.67	

		wh	ite Mesa M	ill - well Tv			
Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
()	5,631.99	5,634.24	2.25		(1111)	(111
5,576.75				01/03/02	57.49	55.24	
5,576.92				02/06/02	57.32	55.07	
5,577.43				03/26/02	56.81	54.56	
5,577.22				04/09/02	57.02	54.77	
5,577.80				05/23/02	56.44	54.19	
5,577.47				06/05/02	56.77	54.52	
5,577.55				07/08/02	56.69	54.44	
5,578.10				08/23/02	56.14	53.89	
5,578.24				09/11/02	56.00	53.75	
5,578.49				10/23/02	55.75	53.50	
5,578.43				11/22/02	55.81	53.56	
5,578.43				12/03/02	55.81	53.56	
5,578.66				01/09/03	55.58	53.33	
5,578.66				02/12/03	55.58	53.33	
5,578.78				03/26/03	55.46	53.21	
5,578.90				04/02/03	55.34	53.09	
5,578.83				05/01/03	55.41	53.16	
5,578.05				06/09/03	56.19	53.94	
5,577.38				07/07/03	56.86	54.61	
5,577.15				08/04/03	57.09	54.84	
5,576.76				09/11/03	57.48	55.23	
5,576.36				10/02/03	57.88	55.63	
5,576.05				11/07/03	58.19	55.94	
5,576.20				12/03/03	58.04	55.79	
5,577.43				01/15/04	56.81	54.56	
5,577.81				02/10/04	56.43	54.18	
5,578.47				03/28/04	55.77	53.52	
5,578.69				04/12/04	55.55	53.30	
5,578.93				05/13/04	55.31	53.06	
5,578.99				06/18/04	55.25	53.00	
5,579.18				07/28/04	55.06	52.81	
5,579.06				08/30/04	55.18	52.93	
5,578.78				09/16/04 10/11/04	55.46 56.44	53.21 54.19	
5,577.80 5,577.13				11/16/04	50.44 57.11	54.19	
5,576.96				12/22/04	57.28	55.03	
5,576.63				01/18/05	57.61	55.36	
5,576.82				02/28/05	57.42	55.17	
5,576.82 5,576.86				02/28/05	57.38	55.17	
5,577.52				03/13/03	56.72	54.47	
5,578.01				04/20/05	56.23	53.98	
5,578.01				06/30/05	56.09	53.88	
5,577.90				07/29/05	56.34	54.09	
5,577.90				01129105	50.54	57.02	

		M			Total or		
Water	Land	Measuring Point			Measured Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth O
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(111)	5,631.99	5,634.24	2.25	monitoring	(010.001)	(011.1252)	111
5,578.02		-,		09/12/05	56.22	53.97	
5,577.56				12/07/05	56.68	54.43	
5,579.69				03/08/06	54.55	52.30	
5,578.34				06/13/06	55.90	53.65	
5,577.94				07/18/06	56.30	54.05	
5,578.01				11/07/06	56.23	53.98	
5578.43				02/27/07	55.81	53.56	
5,577.84				05/02/07	56.40	54.15	
5,578.74				08/14/07	55.50	53.25	
5,579.04				10/10/07	55.20	52.95	
5,580.69				03/26/08	53.55	51.30	
5,579.87				06/24/08	54.37	52.12	
5,579.47				08/26/08	54.77	52.52	
5,578.87				10/14/08	55.37	53.12	
5,578.01				03/10/09	56.23	53.98	
5,577.85				06/24/09	56.39	54.14	
5,577.49				09/10/09	56.75	54.50	
5,577.98				12/11/09	56.26	54.01	
5,578.38				03/11/10	55.86	53.61	
5,578.16				05/11/10	56.08	53.83	
5,577.85				09/29/10	56.39	54.14	
5,577.28				12/21/10	56.96	54.71	
5,577.14				02/28/11	57.1	54.85	
5,578.09				06/21/11	56.15	53.90	
5,578.24				09/20/11	56	53.75	
5,578.74				12/21/11	55.5	53.25	
5,577.89				03/27/12	56.35	54.10	
5,577.90				06/28/12	56.34	54.09	
5,578.29				09/27/12	55.95	53.70	
5,577.87				12/28/12	56.37	54.12	
5,577.92				03/28/13	56.32	54.07	
5,577.19				06/27/13	57.05	54.80	
5,576.77				09/27/13	57.47	55.22	
5,576.22				12/20/13	58.02	55.77	
5,575.36				03/27/14	58.88	56.63	
5,574.11				06/25/14	60.13	57.88	
5,573.19				09/25/14	61.05	58.80	
5,573.19				12/17/14	61.05	58.80	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,621.92	5,623.62	1.70				100
5,548.32				01/03/02	75.30	73.60	
5,548.73				02/06/02	74.89	73.19	
5,549.03				03/26/02	74.59	72.89	
5,548.84				04/09/02	74.78	73.08	
5,549.30				05/23/02	74.32	72.62	
5,549.01				06/05/02	74.61	72.91	
5,549.22				07/08/02	74.40	72.70	
5,549.44				08/23/02	74.18	72.48	
5,549.57				09/11/02	74.05	72.35	
5,549.64				10/23/02	73.98	72.28	
5,549.58				11/22/02	74.04	72.34	
5,549.62				12/03/02	74.00	72.30	
5,549.85				01/09/03	73.77	72.07	
5,549.91				02/12/03	73.71	72.01	
5,550.15				03/26/03	73.47	71.77	
5,550.01				04/02/03	73.61	71.91	
5,550.31				05/01/03	73.31	71.61	
5,550.44				06/09/03	73.18	71.48	
5,550.33				07/07/03	73.29	71.59	
5,550.35				08/04/03	73.27	71.57	
5,550.44				09/11/03	73.18	71.48	
5,550.47				10/02/03	73.15	71.45	
5,550.60				11/07/03	73.02	71.32	
5,550.60				12/03/03	73.02	71.32	
5,550.94				01/15/04	72.68	70.98	
5,551.00				02/10/04	72.62	70.92	
5,550.34				03/28/04	73.28	71.58	
5,551.54				04/12/04	72.08	70.38	
5,551.89				05/13/04	71.73	70.03	
5,551.94				06/18/04	71.68	69.98	
5,552.49				07/28/04	71.13	69.43	
5,552.74				08/30/04	70.88	69.18	
5,553.01				09/16/04	70.61	68.91	
5,553.11				10/11/04	70.51	68.81	
5,553.19				11/16/04	70.43 70.09	68.73	
5,553.53				12/22/04		68.39	
5,553.31				01/18/05 02/28/05	70.31 69.78	68.61 68.08	
5,553.84 5,554.04				02/28/05	69.78 69.58	67.88	
5,554.04 5,554.23				03/15/05	69.38 69.39	67.69	
5,554.23 5,553.87				04/26/05	69.39 69.75	68.05	
5,553.87 5,554.46				05/24/05	69.75 69.16	68.05 67.46	
5,554.40 5,554.57				07/29/05	69.16 69.05	67.46	
5,554.57				01129/03	09.03	07.55	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,621.92	5,623.62	1.70				100
5,553.86				09/12/05	69.76	68.06	
5,555.30				12/07/05	68.32	66.62	
5,556.20				03/08/06	67.42	65.72	
5,556.48				06/14/06	67.14	65.44	
5,556.37				07/18/06	67.25	65.55	
5,556.94				11/07/06	66.68	64.98	
5557.92				02/27/07	65.70	64	
5,557.84				05/02/07	65.78	64.08	
5,558.02				08/15/07	65.60	63.90	
5,557.13				10/10/07	66.49	64.79	
5,569.74				03/26/08	53.88	52.18	
5,561.01				06/24/08	62.61	60.91	
5,562.07				08/26/08	61.55	59.85	
5,562.47				10/14/08	61.15	59.45	
5,563.80				03/10/09	59.82	58.12	
5,564.27				06/24/09	59.35	57.65	
5,564.32				09/10/09	59.30	57.60	
5,564.70				12/11/09	58.92	57.22	
5,565.14				03/11/10	58.48	56.78	
5,565.61				05/11/10	58.01	56.31	
5,565.67				09/29/10	57.95	56.25	
5,565.62				12/21/10	58.00	56.30	
5,565.42				02/28/11	58.20	56.50	
5,566.01				06/21/11	57.61	55.91	
5,566.03				09/20/11	57.59	55.89	
5,566.63				12/21/11	56.99	55.29	
5,565.81				03/27/12	57.81	56.11	
5,565.82				06/28/12	57.80	56.10	
5,566.66				09/27/12	56.96	55.26	
5,565.77				12/28/12	57.85	56.15	
5,566.89				03/28/13	56.73	55.03	
5,566.32				06/27/13	57.30	55.60	
5,565.92				09/27/13	57.70	56.00	
5,565.63				12/20/13	57.99	56.29	
5,565.03				03/27/14	58.59	56.89	
5,564.18				06/25/14	59.44	57.74	
5,563.52				09/25/14	60.10	58.40	
5,563.37				12/17/14	60.25	58.55	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.38	5,624.23	1.85				101.5
 5,580.91				08/23/02	43.32	41.47	
5,581.54				09/11/02	42.69	40.84	
5,581.33				10/23/02	42.90	41.05	
5,581.47				11/22/02	42.76	40.91	
5,581.55				12/03/02	42.68	40.83	
5,582.58				01/09/03	41.65	39.80	
5,582.47				02/12/03	41.76	39.91	
5,582.71				03/26/03	41.52	39.67	
5,582.11				04/02/03	42.12	40.27	
5,582.92				05/01/03	41.31	39.46	
5,583.13				06/09/03	41.10	39.25	
5,583.21				07/07/03	41.02	39.17	
5,583.31				08/04/03	40.92	39.07	
5,583.55				09/11/03	40.68	38.83	
5,583.72				10/02/03	40.51	38.66	
5,583.77				11/07/03	40.46	38.61	
5,584.01				12/03/03	40.22	38.37	
5,584.37				01/15/04	39.86	38.01	
5,584.39				02/10/04	39.84	37.99	
5,584.51				03/28/04	39.72	37.87	
5,584.90				04/12/04	39.33	37.48	
5,584.88				05/13/04	39.35	37.50	
5,584.93				06/18/04	39.30	37.45	
5,585.36				07/28/04	38.87	37.02	
5,585.38				08/30/04	38.85	37.00	
5,585.49				09/16/04	38.74	36.89	
5,585.85				10/11/04	38.38	36.53	
5,585.91				11/16/04	38.32	36.47	
5,586.35				12/22/04	37.88	36.03	
5,586.14				01/18/05	38.09	36.24	
5,586.56				02/28/05	37.67	35.82	
5,586.95				03/15/05	37.28	35.43	
5,587.20				04/26/05	37.03	35.18	
5,587.35				05/24/05	36.88	35.03	
5,587.58				06/30/05	36.65	34.80	
5,587.58				07/29/05	36.65	34.80	
5,587.94				09/12/05	36.29	34.44	
5,588.43				12/07/05	35.80	33.95	
5,588.92				03/08/06	35.31	33.46	
5,588.34				06/13/06	35.89	34.04	
5,588.33				07/18/06	35.90	34.05	
5,584.70				11/07/06	39.53	37.68	
5588.85				02/27/07	35.38	33.53	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.38	5,624.23	1.85				101.5
5,588.53				05/02/07	35.70	33.85	
5,586.49				08/14/07	37.74	35.89	
5,586.68				10/10/07	37.55	35.70	
5,587.76				03/26/08	36.47	34.62	
5,587.59				06/24/08	36.64	34.79	
5,587.35				08/26/08	36.88	35.03	
5,586.84				10/14/08	37.39	35.54	
5,586.17				03/03/09	38.06	36.21	
5,585.74				06/24/09	38.49	36.64	
5,585.54				09/10/09	38.69	36.84	
5,585.77				12/11/09	38.46	36.61	
5,585.88				03/11/10	38.35	36.50	
5,586.35				05/11/10	37.88	36.03	
5,585.68				09/29/10	38.55	36.70	
5,585.09				12/21/10	39.14	37.29	
5,584.65				02/28/11	39.58	37.73	
5,584.76				06/21/11	39.47	37.62	
5,584.32				09/20/11	39.91	38.06	
5,584.22				12/21/11	40.01	38.16	
5,577.07				03/27/12	47.16	45.31	
5,577.05				06/28/12	47.18	45.33	
5,583.14				09/27/12	41.09	39.24	
5,577.10				12/28/12	47.13	45.28	
5,582.71				03/28/13	41.52	39.67	
5,582.25				06/27/13	41.98	40.13	
5,582.24				09/27/13	41.99	40.14	
5,582.12				12/20/13	42.11	40.26	
5,581.67				03/27/14	42.56	40.71	
5,581.03				06/25/14	43.20	41.35	
5,580.49				09/25/14	43.74	41.89	
5,580.33				12/17/14	43.9	42.05	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,618.09	5,619.94	1.85				102.5
5,529.66				08/23/02	90.28	88.43	.
5,530.66				09/11/02	89.28	87.43	
5,529.10				10/23/02	90.84	88.99	
5,530.58				11/22/02	89.36	87.51	
5,530.61				12/03/02	89.33	87.48	
5,529.74				01/09/03	90.20	88.35	
5,531.03				02/12/03	88.91	87.06	
5,531.82				03/26/03	88.12	86.27	
5,524.63				04/02/03	95.31	93.46	
5,531.54				05/01/03	88.40	86.55	
5,538.46				06/09/03	81.48	79.63	
5,539.38				07/07/03	80.56	78.71	
5,540.72				08/04/03	79.22	77.37	
5,541.25				09/11/03	78.69	76.84	
5,541.34				10/02/03	78.60	76.75	
5,541.69				11/07/03	78.25	76.40	
5,541.91				12/03/03	78.03	76.18	
5,542.44				01/15/04	77.50	75.65	
5,542.47				02/10/04	77.47	75.62	
5,542.84				03/28/04	77.10	75.25	
5,543.08				04/12/04	76.86	75.01	
5,543.34				05/13/04	76.60	74.75	
5,543.40				06/18/04	76.54	74.69	
5,544.06				07/28/04	75.88	74.03	
5,544.61				08/30/04	75.33	73.48	
5,545.23				09/16/04	74.71	72.86	
5,546.20				10/11/04	73.74	71.89	
5,547.43				11/16/04	72.51	70.66	
5,548.96				12/22/04	70.98	69.13	
5,549.02				01/18/05	70.92	69.07	
5,550.66				02/28/05	69.28	67.43	
5,551.26				03/15/05	68.68	66.83	
5,552.23				04/26/05	67.71	65.86	
5,552.87				05/24/05	67.07	65.22	
5,553.42				06/30/05	66.52	64.67	
5,554.00				07/29/05	65.94	64.09	
5,555.21				09/12/05	64.73	62.88	
5,558.13				12/07/05	61.81	59.96	
5,562.93				03/08/06	57.01	55.16	
5,564.39				06/13/06	55.55	53.70	
5,562.09				07/18/06	57.85	56.00	
5,565.49				11/07/06	54.45	52.60	
5571.08				02/27/07	48.86	47.01	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,618.09	5,619.94	1.85				102.5
5,570.63				05/02/07	49.31	47.46	
5,565.24				08/14/07	54.70	52.85	
5,565.83				10/10/07	54.11	52.26	
5,569.29				03/26/08	50.65	48.80	
5,570.00				06/24/08	49.94	48.09	
5,570.41				08/26/08	49.53	47.68	
5,570.64				10/14/08	49.30	47.45	
5,570.43				03/03/09	49.51	47.66	
5,570.56				06/24/09	49.38	47.53	
5,570.42				09/10/09	49.52	47.67	
5,571.15				12/11/09	48.79	46.94	
5,572.01				03/11/10	47.93	46.08	
5,572.88				05/11/10	47.06	45.21	
5,573.17				09/29/10	46.77	44.92	
5,573.14				12/21/10	46.80	44.95	
5,573.10				02/28/11	46.84	44.99	
5,573.75				06/21/11	46.19	44.34	
5,573.63				09/20/11	46.31	44.46	
5,573.94				12/21/11	46.00	44.15	
5,572.79				03/27/12	47.15	45.30	
5,572.77				06/28/12	47.17	45.32	
5,573.04				09/27/12	46.90	45.05	
5,572.79				12/28/12	47.15	45.30	
5,573.03				03/28/13	46.91	45.06	
5,572.44				06/27/13	47.50	45.65	
5,573.46				09/27/13	46.48	44.63	
5,573.46				12/20/13	46.48	44.63	
5,572.90				03/27/14	47.04	45.19	
5,571.79				06/25/14	48.15	46.30	
5,571.04				09/25/14	48.90	47.05	
5,571.08				12/17/14	48.86	47.01	

Total or Measuring Measured Total Water Land Point Depth to Depth to Total Elevation Water Depth Of Elevation Surface Length Of **Date Of** Water Well (WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) 93 5,610.92 5,612.77 1.85 5,518.90 08/23/02 93.87 92.02 93.49 5,519.28 09/11/02 91.64 92.82 90.97 5,519.95 10/23/02 11/22/02 92.45 90.60 5,520.32 92.35 90.50 5,520.42 12/03/02 92.07 90.22 5,520.70 01/09/03 5,520.89 02/12/03 91.88 90.03 91.65 89.80 5,521.12 03/26/03 5,521.12 04/02/03 91.65 89.80 05/01/03 91.53 89.68 5,521.24 91.43 89.58 5,521.34 06/09/03 91.41 07/07/03 89.56 5,521.36 91.42 89.57 5,521.35 08/04/03 5,521.30 09/11/03 91.47 89.62 91.42 10/02/03 89.57 5,521.35 91.41 89.56 5,521.36 11/07/03 5,521.16 12/03/03 91.61 89.76 91.48 89.63 5,521.29 01/15/04 91.41 89.56 5,521.36 02/10/04 5,521.46 03/28/04 91.31 89.46 91.23 89.38 5,521.54 04/12/04 5,521.59 05/13/04 91.18 89.33 5,521.69 06/18/04 91.08 89.23 91.06 89.21 5,521.71 07/28/04 5,521.76 08/30/04 91.01 89.16 5,521.77 09/16/04 91.00 89.15 5,521.79 10/11/04 90.98 89.13 90.97 89.12 5,521.80 11/16/04 5,521.82 90.95 89.10 12/22/04 5,521.82 01/18/05 90.95 89.10 5,521.86 02/28/05 90.91 89.06 5,521.85 03/15/05 90.92 89.07 90.86 89.01 5,521.91 04/26/05 5,521.93 05/24/05 90.84 88.99 5,521.94 06/30/05 90.83 88.98 5,521.84 07/29/05 90.93 89.08 90.78 5,521.99 09/12/05 88.93 5,522.04 12/07/05 90.73 88.88 5,522.05 03/08/06 90.72 88.87 90.50 88.65 5,522.27 06/13/06 5,521.92 07/18/06 90.85 89.00

11/07/06

02/27/07

92.60

90.53

90.75

88.68

5,520.17

5522.24

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,610.92	5,612.77	1.85				93
5,522.47				05/02/07	90.30	88.45	
5,520.74				08/14/07	92.03	90.18	
5,518.13				10/10/07	94.64	92.79	
5,522.85				03/26/08	89.92	88.07	
5,522.91				06/24/08	89.86	88.01	
5,523.01				08/26/08	89.76	87.91	
5,522.96				10/14/08	89.81	87.96	
5,523.20				03/03/09	89.57	87.72	
5,523.33				06/24/09	89.44	87.59	
5,523.47				09/10/09	89.30	87.45	
5,523.54				12/11/09	89.23	87.38	
5,522.98				03/11/10	89.79	87.94	
5,524.01				05/11/10	88.76	86.91	
5,524.37				09/29/10	88.40	86.55	
5,524.62				12/21/10	88.15	86.30	
5,524.78				02/28/11	87.99	86.14	
5,525.23				06/21/11	87.54	85.69	
5,525.45				09/20/11	87.32	85.47	
5,525.72				12/21/11	87.05	85.20	
5,525.88				03/27/12	86.89	85.04	
5,525.97				06/28/12	86.80	84.95	
5,526.32				09/27/12	86.45	84.60	
5,525.88				12/28/12	86.89	85.04	
5,526.91				03/28/13	85.86	84.01	
5,526.99				06/27/13	85.78	83.93	
5,527.68				09/27/13	85.09	83.24	
5,528.19				12/20/13	84.58	82.73	
5,528.75				03/27/14	84.02	82.17	
5,529.21				06/25/14	83.56	81.71	
5,529.78				09/25/14	82.99	81.14	
5,530.41				12/17/14	82.36	80.51	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,574.75				08/23/02	50.70	49.40	
5,574.97				09/11/02	50.48	49.18	
5,575.10				10/23/02	50.35	49.05	
5,574.99				11/22/02	50.46	49.16	
5,575.28				12/03/02	50.17	48.87	
5,575.41				01/09/03	50.04	48.74	
5,575.43				02/12/03	50.02	48.72	
5,575.63				03/26/03	49.82	48.52	
5,575.91				04/02/03	49.54	48.24	
5,575.81				05/01/03	49.64	48.34	
5,572.36				06/09/03	53.09	51.79	
5,570.70				07/07/03	54.75	53.45	
5,570.29				08/04/03	55.16	53.86	
5,560.94				09/11/03	64.51	63.21	
5,560.63				10/02/03	64.82	63.52	
5,560.56				11/07/03	64.89	63.59	
5,564.77				12/03/03	60.68	59.38	
5,570.89				01/15/04	54.56	53.26	
5,572.55				02/10/04	52.90	51.60	
5,574.25				03/28/04	51.20	49.90	
5,574.77				04/12/04	50.68	49.38	
5,575.53				05/13/04	49.92	48.62	
5,575.59				06/18/04	49.86	48.56	
5,576.82				07/28/04	48.63	47.33	
5,527.47				09/16/04	97.98	96.68	
5,553.97				11/16/04	71.48	70.18	
5,562.33				12/22/04	63.12	61.82	
5,550.00				01/18/05	75.45	74.15	
5,560.02				04/26/05	65.43	64.13	
5,546.11				05/24/05	79.34	78.04	
5,556.71				06/30/05	68.74	67.44	
5,554.95				07/29/05	70.50	69.20	
5,555.48				09/12/05	69.97	68.67	
5,551.09				12/07/05	74.36	73.06	
5,552.85				03/08/06	72.60	71.30	
5,554.30				06/13/06	71.15	69.85	
5,554.87				07/18/06	70.58	69.28	
5,550.88				11/07/06	74.57	73.27	
5558.77				02/27/07	66.68	65.38	
5,548.54				05/02/07	76.91	75.61	
5,551.33				10/10/07	74.12	72.82	
5,545.56				03/26/08	79.89	78.59	
5,545.56				06/25/08	79.89	78.59	
2004							

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,545.82				08/26/08	79.63	78.33	
5,545.64				10/14/08	79.81	78.51	
5,544.45				03/03/09	81.00	79.70	
5,545.32				06/24/09	80.13	78.83	
5,544.61				09/10/09	80.84	79.54	
5,549.33				12/11/09	76.12	74.82	
5,543.78				03/11/10	81.67	80.37	
5,545.61				05/11/10	79.84	78.54	
5,547.43				09/29/10	78.02	76.72	
5,544.14				12/21/10	81.31	80.01	
5,546.77				02/28/11	78.68	77.38	
5,537.60				06/21/11	87.85	86.55	
5,551.46				09/20/11	73.99	72.69	
5,549.12				12/21/11	76.33	75.03	
5,557.30				03/27/12	68.15	66.85	
5,557.38				06/28/12	68.07	66.77	
5,550.86				09/27/12	74.59	73.29	
5,557.30				12/28/12	68.15	66.85	
5,565.37				03/28/13	60.08	58.78	
5,563.55				06/27/13	61.90	60.60	
5,560.12				09/27/13	65.33	64.03	
5,559.27				12/20/13	66.18	64.88	
5,556.65				03/27/14	68.80	67.50	
5,552.23				06/25/14	73.22	71.92	
5,554.05				09/25/14	71.40	70.10	
5,550.65				12/17/14	74.80	73.50	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,622.19	5,624.02	1.83				142
5,562.91				08/23/02	61.11	59.28	
5,563.45				09/11/02	60.57	58.74	
5,563.75				10/23/02	60.27	58.44	
5,563.68				11/22/02	60.34	58.51	
5,563.68				12/03/02	60.34	58.51	
5,564.16				01/09/03	59.86	58.03	
5,564.25				02/12/03	59.77	57.94	
5,564.53				03/26/03	59.49	57.66	
5,564.46				04/02/03	59.56	57.73	
5,564.79				05/01/03	59.23	57.40	
5,564.31				06/09/03	59.71	57.88	
5,563.29				07/07/03	60.73	58.90	
5,562.76				08/04/03	61.26	59.43	
5,561.73				09/11/03	62.29	60.46	
5,561.04				10/02/03	62.98	61.15	
5,560.39				11/07/03	63.63	61.80	
5,559.79				12/03/03	64.23	62.40	
5,561.02				01/15/04	63.00	61.17	
5,561.75				02/10/04	62.27	60.44	
5,562.98				03/28/04	61.04	59.21	
5,563.29				04/12/04	60.73	58.90	
5,564.03				05/13/04	59.99	58.16	
5,564.09				06/18/04	59.93	58.10	
5,565.08				07/28/04	58.94	57.11	
5,564.56				08/30/04	59.46	57.63	
5,563.55				09/16/04	60.47	58.64	
5,561.79				10/11/04	62.23	60.40	
5,560.38				11/16/04	63.64	61.81	
5,559.71				12/22/04	64.31	62.48	
5,559.14				01/18/05	64.88	63.05	
5,558.65				02/28/05	65.37	63.54	
5,558.54				03/15/05	65.48	63.65	
5,558.22				04/26/05	65.80	63.97	
5,558.54				05/24/05	65.48	63.65	
5,559.24				06/30/05	64.78	62.95	
5,559.38				07/29/05	64.64	62.81	
5,559.23				09/12/05	64.79	62.96	
5,557.67				12/07/05	66.35	64.52	
5,557.92				03/08/06	66.10	64.27	
5,558.47				06/13/06	65.55	63.72	
5,558.42				07/18/06	65.60	63.77	
5,558.09				11/07/06	65.93	64.10	
5557.34				02/27/07	66.68	64.85	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(112)	5,622.19	5,624.02	1.83	intoining	(01111111)	(STALLOD)	142
5,547.11		•		05/02/07	76.91	75.08	
5,558.52				08/14/07	65.50	63.67	
5,559.02				10/10/07	65.00	63.17	
5,561.04				03/26/08	62.98	61.15	
5,560.06				06/24/08	63.96	62.13	
5,559.32				08/26/08	64.70	62.87	
5,558.89				10/14/08	65.13	63.30	
5,558.40				03/03/09	65.62	63.79	
5,558.32				06/24/09	65.70	63.87	
5,558.03				09/10/09	65.99	64.16	
5,558.81				12/11/09	65.21	63.38	
5,559.80				03/11/10	64.22	62.39	
5,559.85				05/11/10	64.17	62.34	
5,560.54				09/29/10	63.48	61.65	
5,558.65				12/21/10	65.37	63.54	
5,559.26				02/28/11	64.76	62.93	
5,560.48				06/21/11	63.54	61.71	
5,561.52				09/20/11	62.50	60.67	
5,562.95				12/21/11	61.07	59.24	
5,563.76				03/27/12	60.26	58.43	
5,563.90				06/28/12	60.12	58.29	
5,564.65				09/27/12	59.37	57.54	
5,563.77				12/28/12	60.25	58.42	
5,564.74				03/28/13	59.28	57.45	
5,563.66				06/27/13	60.36	58.53	
5,562.27				09/27/13	61.75	59.92	
5,562.17				12/20/13	61.85	60.02	
5,561.17				03/27/14	62.85	61.02	
5,559.53				06/25/14	64.49	62.66	
5,558.36				09/25/14	65.66	63.83	
5,558.00				12/17/14	66.02	64.19	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.41	5,625.24	1.83				130.6
5,542.17				08/23/02	83.07	81.24	
5,542.39				09/11/02	82.85	81.02	
5,542.61				10/23/02	82.63	80.80	
5,542.49				11/22/02	82.75	80.92	
5,542.82				12/03/02	82.42	80.59	
5,543.03				01/09/03	82.21	80.38	
5,543.04				02/12/03	82.20	80.37	
5,543.41				03/26/03	81.83	80.00	
5,543.69				04/02/03	81.55	79.72	
5,543.77				05/01/03	81.47	79.64	
5,544.01				06/09/03	81.23	79.40	
5,544.05				07/07/03	81.19	79.36	
5,543.99				08/04/03	81.25	79.42	
5,544.17				09/11/03	81.07	79.24	
5,544.06				10/02/03	81.18	79.35	
5,544.03				11/07/03	81.21	79.38	
5,543.94				12/03/03	81.30	79.47	
5,543.98				01/15/04	81.26	79.43	
5,543.85				02/10/04	81.39	79.56	
5,544.05				03/28/04	81.19	79.36	
5,544.33				04/12/04	80.91	79.08	
5,544.55				05/13/04	80.69	78.86	
5,544.59				06/18/04	80.65	78.82	
5,545.08				07/28/04	80.16	78.33	
5,545.26				08/30/04	79.98	78.15	
5,545.48				09/16/04	79.76	77.93	
5,545.61				10/11/04	79.63	77.80	
5,545.46				11/16/04	79.78	77.95	
5,545.66				12/22/04	79.58	77.75	
5,545.33				01/18/05	79.91	78.08	
5,545.51				02/28/05	79.73	77.90	
5,545.57				03/15/05	79.67	77.84	
5,545.46				04/26/05	79.78	77.95	
5,545.45				05/24/05	79.79	77.96	
5,545.33				06/30/05	79.91	78.08	
5,545.16				07/29/05	80.08	78.25	
5,545.54				09/12/05	79.70	77.87	
5,545.77				12/07/05	79.47	77.64	
5,546.09				03/08/06	79.15	77.32	
5,545.94				06/13/06	79.30	77.47	
5,545.94				07/18/06	79.30	77.47	
5,546.24				11/07/06	79.00	77.17	
5546.81				02/27/07	78.43	76.6	

Water Levels	and	Data over Time
White Mesa	Mill	- Well MW-32

		vy mite	e iviesa ivii	II - Well IVI	vv -32		
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.41	5,625.24	1.83				130.6
5546.56				05/02/07	78.68	76.85	
5546.81				08/15/07	78.43	76.6	
5546.96				10/10/07	78.28	76.45	
5547.9				03/26/08	77.34	75.51	
5548.08				06/25/08	77.16	75.33	
5548.42				08/26/08	76.82	74.99	
5548.05				10/14/08	77.19	75.36	
5548.29				03/03/09	76.95	75.12	
5548.09				06/24/09	77.15	75.32	
5547.79				09/10/09	77.45	75.62	
5548.09				12/11/09	77.15	75.32	
5,548.50				03/11/10	76.74	74.91	
5,548.89				05/11/10	76.35	74.52	
5,548.83				09/29/10	76.41	74.58	
5,548.97				12/21/10	76.27	74.44	
5,548.68				02/28/11	76.56	74.73	
5,549.33				06/21/11	75.91	74.08	
5,549.19				09/20/11	76.05	74.22	
5,550.06				12/21/11	75.18	73.35	
5,550.31				03/27/12	74.93	73.10	
5,550.32				06/28/12	74.92	73.09	
5,550.88				09/27/12	74.36	72.53	
5,550.29				12/28/12	74.95	73.12	
5,551.54				03/28/13	73.70	71.87	
5,550.34				06/27/13	74.90	73.07	
5,551.35				09/27/13	73.89	72.06	
5,551.33				12/20/13	73.91	72.08	
5,550.97				03/27/14	74.27	72.44	
5,550.16				06/25/14	75.08	73.25	
5,549.29				09/25/14	75.95	74.12	
5,548.99				12/17/14	76.25	74.42	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.13	5,641.28	2.15				137.5
5,585.13				08/23/02	56.15	54.00	
5,585.41				09/11/02	55.87	53.72	
5,585.47				10/23/02	55.81	53.66	
5,585.40				11/22/02	55.88	53.73	
5,585.68				12/03/02	55.60	53.45	
5,585.90				01/09/03	55.38	53.23	
5,590.79				02/12/03	50.49	48.34	
5,586.18				03/26/03	55.10	52.95	
5,586.36				04/02/03	54.92	52.77	
5,586.24				05/01/03	55.04	52.89	
5,584.93				06/09/03	56.35	54.20	
5,584.46				07/07/03	56.82	54.67	
5,584.55				08/04/03	56.73	54.58	
5,584.01				09/11/03	57.27	55.12	
5,583.67				10/02/03	57.61	55.46	
5,583.50				11/07/03	57.78	55.63	
5,584.08				12/03/03	57.20	55.05	
5,585.45				01/15/04	55.83	53.68	
5,585.66				02/10/04	55.62	53.47	
5,586.13				03/28/04	55.15	53.00	
5,586.39				04/12/04	54.89	52.74	
5,586.66				05/13/04	54.62	52.47	
5,586.77				06/18/04	54.51	52.36	
5,587.35				07/28/04	53.93	51.78	
5,586.34				08/30/04	54.94	52.79	
5,585.85				09/16/04	55.43	53.28	
5,585.22				10/11/04	56.06	53.91	
5,584.70				11/16/04	56.58	54.43	
5,584.81				12/22/04	56.47	54.32	
5,584.68				01/18/05	56.60	54.45	
5,585.02				02/28/05	56.26	54.11	
5,585.25				03/15/05	56.03	53.88	
5,586.31				04/26/05	54.97	52.82	
5,586.97				05/24/05	54.31	52.16	
5,586.58				06/30/05	54.70	52.55	
5,586.10				07/29/05	55.18	53.03	
5,586.05				09/12/05	55.23	53.08	
5,585.86				12/07/05	55.42	53.27	
5,587.13				03/08/06	54.15	52.00	
5,585.93				06/13/06	55.35	53.20	
5,585.40				07/18/06	55.88	53.73	
5,585.38				11/07/06	55.90	53.75	
5585.83				02/27/07	55.45	53.30	
5505105				02.21101	00110	22120	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.13	5,641.28	2.15				137.5
5585.15				05/02/07	56.13	53.98	
5586.47				06/24/08	54.81	52.66	
5586.3				08/26/08	54.98	52.83	
5585.21				10/14/08	56.07	53.92	
5584.47				03/03/09	56.81	54.66	
5584.35				06/24/09	56.93	54.78	
5583.88				09/10/09	57.4	55.25	
5584.43				12/11/09	56.85	54.70	
5,585.26				03/11/10	56.02	53.87	
5,584.17				05/11/10	57.11	54.96	
5,583.61				09/29/10	57.67	55.52	
5,604.29				12/21/10	36.99	34.84	
5,583.56				02/28/11	57.72	55.57	
5,584.73				06/21/11	56.55	54.40	
5,584.71				09/20/11	56.57	54.42	
5,585.03				12/21/11	56.25	54.10	
5,584.63				03/27/12	56.65	54.50	
5,584.67				06/28/12	56.61	54.46	
5,583.98				09/27/12	57.30	55.15	
5,584.65				12/28/12	56.63	54.48	
5,582.88				03/28/13	58.40	56.25	
5,584.63				06/27/13	56.65	54.50	
5,581.38				09/27/13	59.90	57.75	
5,579.71				12/20/13	61.57	59.42	
5,579.26				03/27/14	62.02	59.87	
5,577.73				06/25/14	63.55	61.40	
5,576.79				09/25/14	64.49	62.34	
5,577.11				12/17/14	64.17	62.02	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,629.53	5,631.39	1.86				121.33
5,581.88				08/23/02	49.51	47.65	
5,582.14				09/11/02	49.25	47.39	
5,582.06				10/23/02	49.33	47.47	
5,582.07				11/22/02	49.32	47.46	
5,582.16				12/03/02	49.23	47.37	
5,582.28				01/09/03	49.11	47.25	
5,582.29				02/21/03	49.10	47.24	
5,582.74				03/26/03	48.65	46.79	
5,582.82				04/02/03	48.57	46.71	
5,548.47				05/01/03	82.92	81.06	
5,564.76				06/09/03	66.63	64.77	
5,562.53				07/07/03	68.86	67.00	
5,564.10				08/04/03	67.29	65.43	
5,566.01				08/30/04	65.38	63.52	
5,555.16				09/16/04	76.23	74.37	
5,549.80				10/11/04	81.59	79.73	
5,546.04				11/16/04	85.35	83.49	
5,547.34				12/22/04	84.05	82.19	
5,548.77				01/18/05	82.62	80.76	
5,551.18				02/28/05	80.21	78.35	
5,556.81				03/15/05	74.58	72.72	
5,562.63				04/26/05	68.76	66.90	
5,573.42				05/24/05	57.97	56.11	
5,552.94				07/29/05	78.45	76.59	
5,554.00				09/12/05	77.39	75.53	
5,555.98				12/07/05	75.41	73.55	
5,552.00				03/08/06	79.39	77.53	
5,545.74				06/13/06	85.65	83.79	
5,544.06				07/18/06	87.33	85.47	
5,548.81				11/07/06	82.58	80.72	
5543.59				02/27/07	87.80	85.94	
5544.55				05/02/07	86.84	84.98	
5558.97				03/02/07	72.42	70.56	
5559.73				10/10/07	72.42	69.8	
				03/26/08		60.27	
5569.26					62.13		
5535.47				06/25/08	95.92	94.06	
5541.41				08/26/08	89.98	88.12	
5558.45				10/14/08	72.94	71.08	
5536.9				03/03/09	94.49	92.63	
5547.76				06/24/09	83.63	81.77	
5561.48				09/10/09	69.91	68.05	
5548.14				12/11/09	83.25	81.39	
5,570.58				03/11/10	60.81	58.95	

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(112)	5,629.53	5,631.39	1.86	litothiothing	(01111111)	(MINILDD)	121.33
5,561.35				05/11/10	70.04	68.18	
5,535.26				09/29/10	96.13	94.27	
5,568.40				12/21/10	62.99	61.13	
5,550.36				02/28/11	81.03	79.17	
5,570.41				06/21/11	60.98	59.12	
5,567.84				09/20/11	63.55	61.69	
5,571.32				12/21/11	60.07	58.21	
5,572.40				03/27/12	58.99	57.13	
5,572.39				06/28/12	59.00	57.14	
5,571.40				09/27/12	59.99	58.13	
5,568.21				12/28/12	63.18	61.32	
5,572.51				03/28/13	58.88	57.02	
5,566.00				06/27/13	65.39	63.53	
5,568.37				09/27/13	63.02	61.16	
5,564.55				12/20/13	66.84	64.98	
5,565.11				03/27/14	66.28	64.42	
5,561.49				06/25/14	69.90	68.04	
5,562.67				09/25/14	68.72	66.86	
5,562.99				12/17/14	68.40	66.54	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(**L)	5,628.52	5,629.53	1.01	Wolltoning		(DIW.LOD)	106.0
5,565.70	5,020.52	5,027.55	1.01	07/29/05	63.83	62.82	100.0
5,546.53				08/30/05	83.00	81.99	
5,540.29				09/12/05	89.24	88.23	
5,541.17				12/07/05	88.36	87.35	
5,540.33				03/08/06	89.20	88.19	
5,530.43				06/13/06	99.10	98.09	
5,569.13				07/18/06	60.40	59.39	
5,547.95				11/07/06	81.58	80.57	
5,549.25				02/27/07	80.28	79.27	
5,550.58				05/02/07	78.95	77.94	
5,563.60				08/14/07	65.93	64.92	
5,555.85				10/10/07	73.68	72.67	
				03/26/08	60.43	59.42	
5,569.10					69.53		
5,560.00				06/25/08		68.52	
5,539.64				08/26/08	89.89	88.88	
5,539.51				10/14/08	90.02	89.01	
5,553.00				03/03/09	76.53	75.52	
5,534.18				06/24/09	95.35	94.34	
5,558.39				09/10/09	71.14	70.13	
5,560.99				12/11/09	68.54	67.53	
5,564.09				03/11/10	65.44	64.43	
5,564.22				05/11/10	65.31	64.30	
5,560.33				09/29/10	69.20	68.19	
5,561.35				12/21/10	68.18	67.17	
5,560.18				02/28/11	69.35	68.34	
5,576.23				06/21/11	53.30	52.29	
5,548.50				09/20/11	81.03	80.02	
5,558.58				12/21/11	70.95	69.94	
5,567.73				03/27/12	61.80	60.79	
5,567.77				06/28/12	61.76	60.75	
5,569.58				09/27/12	59.95	58.94	
5,572.58				12/28/12	56.95	55.94	
5,571.52				03/28/13	58.01	57.00	
5,569.93				06/27/13	59.60	58.59	
5,568.53				09/27/13	61.00	59.99	
5,559.44				12/20/13	70.09	69.08	
5,562.17				03/27/14	67.36	66.35	
5,558.98				06/25/14	70.55	69.54	
5,561.03				09/25/14	68.50	67.49	
5,559.39				12/17/14	70.14	69.13	

	white Mesa Mill - Well 1 W4-21								
					Total or				
		Measuring			Measured	Total			
Water	Land	Point			Depth to	Depth to	Total		
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of		
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well		
	5,638.20	5,639.35	1.15				120.92		
5,582.98				07/29/05	56.37	55.22			
5,583.43				08/30/05	55.92	54.77			
5,581.87				09/12/05	57.48	56.33			
5,580.50				12/07/05	58.85	57.70			
5,583.64				03/08/06	55.71	54.56			
5,580.55				06/13/06	58.80	57.65			
5,578.95				07/18/06	60.40	59.25			
5,578.47				11/07/06	60.88	59.73			
5,579.53				02/27/07	59.82	58.67			
5,578.07				05/02/07	61.28	60.13			
5,583.41				08/15/07	55.94	54.79			
5,583.45				10/10/07	55.90	54.75			
5,586.47				03/26/08	52.88	51.73			
5,579.16				06/24/08	60.19	59.04			
5,579.92				08/26/08	59.43	58.28			
5,577.37				10/14/08	61.98	60.83			
5,578.00				03/10/09	61.35	60.20			
5,580.14				06/24/09	59.21	58.06			
5,578.72				09/10/09	60.63	59.48			
5,579.99				12/11/09	59.36	58.21			
5,582.81				03/11/10	56.54	55.39			
5,582.23				05/11/10	57.12	55.97			
5,576.60				09/29/10	62.75	61.60			
5,581.14				12/21/10	58.21	57.06			
5,579.53				02/28/11	59.82	58.67			
5,584.17				06/21/11	55.18	54.03			
5,584.80				09/20/11	54.55	53.40			
5,585.68				12/21/11	53.67	52.52			
5,585.24				03/27/12	54.11	52.96			
5,585.26				06/28/12	54.09	52.94			
5,585.16				09/27/12	54.19	53.04			
5,585.25				12/28/12	54.10	52.95			
5,582.84				03/28/13	56.51	55.36			
5,581.79				06/27/13	57.56	56.41			
5,580.89				09/27/13	58.46	57.31			
5,577.45				12/20/13	61.90	60.75			
5,576.01				03/27/14	63.34	62.19			
5,574.08				06/25/14	65.27	64.12			
5,573.20				09/25/14	66.15	65.00			
5,576.13				12/17/14	63.22	62.07			

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,629.00	1.17				113.5
5,571.89				07/29/05	57.11	55.94	
5,572.20				08/30/05	56.80	55.63	
5,572.08				09/12/05	56.92	55.75	
5,571.61				12/07/05	57.39	56.22	
5,571.85				03/08/06	57.15	55.98	
5,571.62				06/13/06	57.38	56.21	
5,571.42				07/18/06	57.58	56.41	
5,571.02				11/07/06	57.98	56.81	
5571.24				02/27/07	57.76	56.59	
5,570.75				06/29/07	58.25	57.08	
5,571.82				08/14/07	57.18	56.01	
5,571.99				10/10/07	57.01	55.84 54.78	
5,573.05 5,573.04				03/26/08 06/24/08	55.95 55.96	54.78 54.79	
5,573.04				08/26/08	55.96	54.79	
5,573.02				10/14/08	55.98	54.81	
5,573.19				03/10/09	55.81	54.64	
5,573.32				06/24/09	55.68	54.51	
5,573.17				09/10/09	55.83	54.66	
5,573.52				12/11/09	55.48	54.31	
5,573.88				03/11/10	55.12	53.95	
5,574.29				05/11/10	54.71	53.54	
5,574.88				09/29/10	54.12	52.95	
5,574.44				12/21/10	54.56	53.39	
5,574.49				02/28/11	54.51	53.34	
5,574.97				06/21/11	54.03	52.86	
5,575.06				09/20/11	53.94	52.77	
5,575.69				12/21/11	53.31	52.14	
5,575.61				03/27/12	53.39	52.22	
5,575.62				06/28/12	53.38	52.21	
5,575.90				09/27/12	53.10	51.93	
5,575.59				12/28/12	53.41	52.24	
5,573.50 5,572.45				03/28/13 06/27/13	55.50 56.55	54.33 55.38	
5,572.45				09/27/13	56.75	55.58	
5,569.93				12/20/13	59.07	57.90	
5,569.36				03/27/14	59.64	58.47	
5,569.02				06/25/14	59.98	58.81	
5,570.00				09/25/14	59.00	57.83	
5,568.60				12/17/14	60.40	59.23	

				i Data over			
		White	Mesa Mil	l - Well TV			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of		Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,605.77	5,607.37	1.60				113.5
				004000	60.40		
5,538.89				09/13/07	68.48	66.88	
5,538.80				10/10/07	68.57	66.97	
5,539.25				11/30/07	68.12	66.52	
5,539.49				12/11/07	67.88	66.28	
5,539.19				01/08/08	68.18	66.58	
5,539.44				02/18/08	67.93	66.33	
5,539.54				03/26/08	67.83	66.23	
5,539.71				04/23/08	67.66	66.06	
5539.48				05/30/08	67.89	66.29	
5,539.53				06/24/08	67.84	66.24	
5,539.44				07/16/08	67.93	66.33	
5,539.68				08/26/08	67.69	66.09	
5,541.18				09/10/08	66.19	64.59	
5,539.57				10/14/08	67.80	66.20	
5,539.29				11/26/08	68.08	66.48	
5,539.55				12/29/08	67.82	66.22	
5,540.15				01/26/09	67.22	65.62	
5,539.74				02/24/09	67.63	66.03	
5,539.86				03/06/09	67.51	65.91	
5,539.72				04/07/09	67.65	66.05	
5,539.84				05/29/09	67.53	65.93	
5,540.12				06/30/09	67.25	65.65	
5,540.12				07/31/09	67.25	65.65	
5,540.27				08/31/09	67.10	65.50	
5,540.13				09/10/09	67.24	65.64	
5,540.64				12/11/09	66.73	65.13	
5,541.15				03/11/10	66.22	64.62	
5,541.61				05/11/10	65.76	64.16	
5,541.47				09/29/10	65.90	64.30	
5,541.54				12/21/10	65.83	64.23	
5,541.54				02/28/11	65.83	64.23	
5,541.98				06/21/11	65.39	63.79	
5,541.90				09/20/11	65.47	63.87	
5,542.58				12/21/11	64.79	63.19	
5,542.59				03/27/12	64.78	63.18	
5,542.61				06/28/12	64.76	63.16	
5,542.92				09/27/12	64.45	62.85	
5,542.61				12/28/12	64.76	63.16	
5,543.48				03/28/13	63.89	62.29	
5,543.23				06/27/13	64.14	62.54	
5,543.12				09/27/13	64.25	62.65	
5,542.96				12/20/13	64.41	62.81	

Water Levels and Data over Time

				Total or		
	Measuring			Measured	Total	
Land	Point			Depth to	Depth to	Total
Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,605.77	5,607.37	1.60				113.5
			03/27/14	65.02	63.42	
			06/25/14	65.95	64.35	
			09/25/14	66.72	65.12	
			10/10/14	67.03	65.43	
	Surface (LSD)	LandPointSurfaceElevation(LSD)(MP)	LandPointSurfaceElevationLength Of(LSD)(MP)Riser (L)	Land Point Length Of Date Of Surface Elevation Length Of Date Of (LSD) (MP) Riser (L) Monitoring 5,605.77 5,607.37 1.60 03/27/14 06/25/14 06/25/14 06/25/14 06/25/14	Measuring Measured Land Point Depth to Surface Elevation Length Of Date Of Water (LSD) (MP) Riser (L) Monitoring (blw.MP) 5,605.77 5,607.37 1.60 (LSD) (MP) 3.60 (LSD) (MO) 0.3/27/14 65.02 (D6/25/14) 0.672 0.9/25/14 66.72	Measuring Measured Total Land Point Depth to Depth to Surface Elevation Length Of Date Of Water Water (LSD) (MP) Elevation I.60 Monitoring (blw.MP) (blw.LSD) 5,605.77 5,607.37 1.60

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.70	5,627.83	2.13				113.5
5.570.61				09/13/07	57.22	55.09	
5,570.53				10/10/07	57.30	55.17	
5,571.16				11/30/07	56.67	54.54	
5,571.30				12/11/07	56.53	54.40	
5,571.03				01/08/08	56.80	54.67	
5,571.22				02/18/08	56.61	54.48	
5,571.43				03/26/08	56.40	54.27	
5,571.68				04/23/08	56.15	54.02	
5571.52				05/30/08	56.31	54.18	
5,571.34				06/24/08	56.49	54.36	
5,571.28				07/16/08	56.55	54.42	
5,571.34				08/26/08	56.49	54.36	
5,571.23				09/10/08	56.60	54.47	
5,571.12				10/14/08	56.71	54.58	
5,570.95				11/26/08	56.88	54.75	
5,570.92				12/29/08	56.91	54.78	
5,571.65				01/26/09	56.18	54.05	
5,571.31				02/24/09	56.52	54.39	
5,571.37				03/06/09	56.46	54.33	
5,571.21				04/07/09	56.62	54.49	
5,571.23				05/29/09	56.60	54.47	
5,571.42				06/30/09	56.41	54.28	
5,571.38				07/31/09	56.45	54.32	
5,571.48				08/31/09	56.35	54.22	
5,571.28				09/10/09	56.55	54.42	
5,571.64				12/11/09	56.19	54.06	
5,571.86				03/11/10	55.97	53.84	
5,571.91				05/11/10	55.92	53.79	
5,572.18				09/29/10	55.65	53.52	
5,571.86				12/21/10	55.97	53.84	
5,571.78				02/28/11	56.05	53.92	
5,572.40				06/21/11	55.43	53.30	
5,572.19				09/20/11	55.64	53.51	
5,573.02				12/21/11	54.81	52.68	
5,573.03				03/27/12	54.80	52.67	
5,573.02				06/28/12	54.81	52.68	
5,573.13				09/27/12	54.70	52.57	
5,573.05				12/28/12	54.78	52.65	
5,566.53				03/28/13	61.30	59.17	
5,564.63				06/27/13	63.20	61.07	
5,570.01				09/27/13	57.82	55.69	
5,566.85				12/20/13	60.98	58.85	
5,562.33				03/27/14	65.50	63.37	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,625.70	5,627.83	2.13				113.5
5,563.43				06/25/14	64.40	62.27	
5,563.43				09/25/14	64.40	62.27	
5,560.97				12/17/14	66.86	64.73	

		White	Mesa Mil	l - Well TV	V4-25		
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
(112)	5,627.83	5,644.91	17.08	montoring	(01001111)	(SINED)	134.8
	5,027.05	5,044.71	17.00				154.0
5,601.86				09/13/07	43.05	25.97	
5,601.89				10/10/07	43.02	25.94	
5,602.57				11/30/07	42.34	25.26	
5,602.82				12/11/07	42.09	25.01	
5,601.94				01/08/08	42.97	25.89	
5,599.13				02/18/08	45.78	28.70	
5,597.11				03/26/08	47.80	30.72	
5,595.51				04/23/08	49.40	32.32 33.41	
5594.42				05/30/08 06/24/08	50.49 50.65	33.57	
5,594.26 5,586.67				07/16/08	58.24	41.16	
5,580.07 5,594.17				08/26/08	50.74	33.66	
5,594.17				08/20/08	50.68	33.60	
5,594.12				10/14/08	50.79	33.71	
5,594.06				11/26/08	50.85	33.77	
5,594.87				12/29/08	50.04	32.96	
5,595.89				01/26/09	49.02	31.94	
5,596.27				02/24/09	48.64	31.56	
5,596.47				03/06/09	48.44	31.36	
5,596.74				04/07/09	48.17	31.09	
5,597.55				05/29/09	47.36	30.28	
5,598.11				06/30/09	46.80	29.72	
5,598.22				07/31/09	46.69	29.61	
5,598.52				08/31/09	46.39	29.31	
5,598.49				09/10/09	46.42	29.34	
5,599.48				12/11/09	45.43	28.35	
5,599.75				03/11/10	45.16	28.08	
5,599.63				05/11/10	45.28	28.20	
5,598.68				09/29/10	46.23	29.15	
5,598.66				12/21/10	46.25	29.17	
5,598.18				02/28/11	46.73	29.65	
5,598.61				06/21/11	46.30	29.22	
5,598.08				09/20/11	46.83	29.75	
5,598.23				12/21/11	46.68	29.60	
5,597.41				03/27/12	47.50	30.42	
5,597.41				06/28/12	47.50	30.42	
5,595.60				09/27/12	49.31	32.23	
5,597.41				12/28/12	47.50	30.42	
5,597.43				03/28/13	47.48	30.40	
5,587.61				06/27/13	57.30	40.22	
5,585.91				09/27/13	59.00	41.92	
5,561.00				12/20/13	83.91	66.83	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,644.91	17.08				134.8
5,584.79				03/27/14	60.12	43.04	
5,582.44				06/25/14	62.47	45.39	
5,583.95				09/25/14	60.96	43.88	
5,581.13				12/17/14	63.78	46.70	

					Total or		
XX 7 4		Measuring			Measured	Total	
Water	Land	Point	1 1 00		Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of		Water	Water	Depth Of
(WL)	(LSD) 5,599.98	(MP) 5,601.68	Riser (L) 1.70	Monitoring	(DIW.WIP)	(blw.LSD)	Well
*	3,399.90	5,001.08	1.70				80
5,536.90				06/14/10	64.78	63.08	
5,536.95				09/29/10	64.73	63.03	
5,537.17				12/21/10	64.51	62.81	
5,537.16				02/28/11	64.52	62.82	
5,537.57				06/21/11	64.11	62.41	
5,537.59				09/20/11	64.09	62.39	
5,538.16				12/21/11	63.52	61.82	
5,538.18				03/27/12	63.50	61.80	
5538.23				06/28/12	63.45	61.75	
5,538.57				09/27/12	63.11	61.41	
5,538.20				12/28/12	63.48	61.78	
5,539.13				03/28/13	62.55	60.85	
5,539.00				06/27/13	62.68	60.98	
5,538.94				09/27/13	62.74	61.04	
5,538.97				12/20/13	62.71	61.01	
5,538.53				03/27/14	63.15	61.45	
5,537.85				06/25/14	63.83	62.13	
5,537.33				09/25/14	64.35	62.65	
5,537.14				12/17/14	64.54	62.84	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,606.19	5,607.94	1.75				96
3							
5,517.78				12/21/11	90.16	88.41	
5,524.84				03/27/12	83.10	81.35	
5,524.93				06/28/12	83.01	81.26	
5,525.59				09/27/12	82.35	80.60	
5,524.86				12/28/12	83.08	81.33	
5,526.37				03/28/13	81.57	79.82	
5,526.29				06/27/13	81.65	79.90	
5,527.04				09/27/13	80.90	79.15	
5,527.14				12/20/13	80.80	79.05	
5,527.55				03/27/14	80.39	78.64	
5,527.43				06/25/14	80.51	78.76	
5,527.48				09/25/14	80.46	78.71	
5,527.81				12/17/14	80.13	78.38	

Water	Land	Measuring Point			Total or Measured	Total	Total
Water Elevation (WL)	Land Surface (LSD)	Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Depth to Water (blw.MP)	Depth to Water (blw.LSD)	Depth Of Well
	5,613.52	5,617.00	3.48				105
5,580.69				03/28/13	36.31	32.83	
5,580.30				06/27/13	36.70	33.22	
5,580.35				09/27/13	36.65	33.17	
5,580.25				12/20/13	36.75	33.27	
5,579.83				03/27/14	37.17	33.69	
5,579.21				06/25/14	37.79	34.31	
5,578.84				09/25/14	38.16	34.68	
5,578.72				12/17/14	38.28	34.80	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,602.56	5,606.04	3.48		_		105
5,533.98				03/28/13	72.06	68.58	
5,533.84				06/27/13	72.20	68.72	
5,534.27				09/27/13	71.77	68.29	
5,534.43				12/20/13	71.61	68.13	
5,534.32				03/27/14	71.72	68.24	
5,533.85				06/25/14	72.19	68.71	
5,533.53				09/25/14	72.51	69.03	
5,533.60				12/17/14	72.44	68.96	

 \sim

5,599.335,602.813.485,524.7803/28/1378.0374.555,524.7906/27/1378.0274.545,525.5409/27/1377.2773.795,525.8112/20/1377.0073.525,525.9803/27/1476.8373.355,525.9106/25/1476.9073.42	Total Depth Of Well	Total Depth to Water (blw.LSD)	Total or Measured Depth to Water (blw.MP)	Date Of Monitoring	Length Of Riser (L)	Measuring Point Elevation (MP)	Land Surface (LSD)	Water Elevation (WL)
5,524.7906/27/1378.0274.545,525.5409/27/1377.2773.795,525.8112/20/1377.0073.525,525.9803/27/1476.8373.35	105				3.48	5,602.81	5,599.33	
5,525.5409/27/1377.2773.795,525.8112/20/1377.0073.525,525.9803/27/1476.8373.35		74.55	78.03	03/28/13				5,524.78
5,525.8112/20/1377.0073.525,525.9803/27/1476.8373.35		74.54	78.02	06/27/13				5,524.79
5,525.98 03/27/14 76.83 73.35		73.79	77.27	09/27/13				5,525.54
		73.52	77.00	12/20/13				5,525.81
5,525.91 06/25/14 76.90 73.42		73.35	76.83	03/27/14				5,525.98
		73.42	76.90	06/25/14				5,525.91
5,526.00 09/25/14 76.81 73.33		73.33	76.81	09/25/14				5,526.00
5,526.41 12/17/14 76.40 72.92		72.92	76.40	12/17/14				5,526.41

24

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,601.10	5,604.58	3.48				105
5,520.17				03/28/13	84.41	80.93	
5,520.36				06/27/13	84.22	80.74	
5,521.22				09/27/13	83.36	79.88	
5,521.81				12/20/13	82.77	79.29	
5,522.25				03/27/14	82.33	78.85	
5,522.32				06/25/14	82.26	78.78	
5,522.64				09/25/14	81.94	78.46	
5,523.27				12/17/14	81.31	77.83	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,610.20	5,611.84	1.64				113
5,564.43				09/27/13	47.41	45.77	
5,563.74				12/20/13	48.10	46.46	
5,563.24				03/27/14	48.60	46.96	
5,562.43				06/25/14	49.41	47.77	
5,561.90				09/25/14	49.94	48.30	
5,560.93				12/17/14	50.91	49.27	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,605.20	5,606.73	1.53				84.7
5,536.70				09/27/13	70.03	68.50	
5,536.62				12/20/13	70.11	68.58	
5,536.49				03/27/14	70.24	68.71	
5,536.06				06/25/14	70.67	69.14	
5,535.73				09/25/14	71.00	69.47	
5,535.73				12/17/14	71.00	69.47	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,601.60	5,603.34	1.74				94
5,534.04				09/27/13	69.30	67.56	
5,534.14				12/20/13	69.20	67.46	
5,533.89				03/27/14	69.45	67.71	
5,533.32				06/25/14	70.02	68.28	
5,532.94				09/25/14	70.40	68.66	
5,532.99				12/17/14	70.35	68.61	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,598.67	5,599.87	1.20				85.3
5,525.52 5,525.72				09/25/14 12/17/14	74.35 74.15	73.15 72.95	

Water	Land	Measuring Point	Langth Of	Dete Of	Total or Measured Depth to	Total Depth to	Total
Elevation (WL)	Surface (LSD)	Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Water (blw.MP)	Water (blw.LSD)	Depth Of Well
()	5,615.18	5,616.59	1.41		()	(98
5,559.14				09/25/14	57.45	56.04	
5,559.77				12/17/14	56.82	55.41	

Tab H

Laboratory Analytical Reports

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-006Client Sample ID:MW-04_10212014Collection Date:10/21/2014Received Date:10/24/2014950h

Contact: Garrin Palmer

Analytical Results

0 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
e City, UT 84119	Chloride	mg/L		11/2/2014 1535h	E300.0	10.0	41.5	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1046h	E353.2	1.00	5.07	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

3440 Salt Lake

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 12 of 55

All analyses applicable to the CWA, SDWA, and RCIIA are performed in accordance to NELAC protocols. Performed sampling information is located on the attached COC. Confidential Business Information: This report is provided for the examines use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, protocolon with all of any product or process or in connection will the republication of this report for any purpose when than for the addressee will be granted unity on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in read faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-006C

 Client Sample ID:
 MW-04_10212014

 Collection Date:
 10/21/2014
 1335h

 Received Date:
 10/24/2014
 950h

Analytical Results

Analyzed: 10/28/2014 157h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Units: µg/L	Dilution Fact	or: 50		Method:	SW8260C	
Compound			CAS Jumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	50.0	1,440	-
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,620	2,500	105	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,550	2,500	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,560	2,500	102	80-124	
Surr: Toluene-d8	2037-26-5	2,510	2,500	100	77-129	
\sim - The reporting limits were raised du		ntrations.				
Analyzed: 10/27/2014 1353 Units: μg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound			CAS 1 umber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
,,		1	5-07-2	1100		
-	CAS	Result	Amount Spike		Limits	Qual
	CAS 17060-07-0					Qual
Surrogate		Result	Amount Spike	ed % REC	Limits	Qual
Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	Result 48.6	Amount Spike	ed % REC 97.1	Limits 72-151	Qual

Report Date: 11/12/2014 Page 32 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Perform sampling information is located on the attached COC. Confidential Humans Information. This report is provided for the each two use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in cunnection with the advertisement, promotion and/or analysis in good falls and according to the rules of the trade and of scence.

Client: Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 **Project:** Lab Sample ID: 1410466-017 Client Sample ID: TW4-01_10292014 **Collection Date:** 10/29/2014 913h 10/31/2014 950h **Received Date:**

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 2033h	E300.0	10.0	38.7	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1234h	E353.2	1.00	6.31	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 23 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is focated on the attached COC. Confidential Business Information This report is provided for the exclusive use of the addressee. Privileges of subsequent use of this company or any incruder of its suff, we reproduction of this report in connection with the advertisement, promotion or atte of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in rood faith and according to the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-017CClient Sample ID:TW4-01_10292014Collection Date:10/29/2014 913hReceived Date:10/31/2014 950h

Analytical Results

Analyzed: 11/5/2014 1231h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

```
Kyle F. Gross
Laboratory Director
```

Jose Rocha QA Officer

Units: µg/L	Dilution Fact	tor: 20		Method:	SW8260C	
Compound		N	CAS lumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	67-66-3	20.0	1,140	2
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,160	1,000	116	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	1,110	1,000	111	80-128	
Surr: Dibromofluoromethane	1868-53-7	1,110	1,000	111	80-124	
Surr: Toluene-d8	2037-26-5	1,060	1,000	106	77-129	
\sim - The reporting limits were raised due	e to high analyte conce	ntrations.				
Analyzed: 11/4/2014 2318h Units: μg/L	Dilution Fact	t or: 1		Method:	SW8260C	
Compound			CAS umber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	57.0	50.00	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	54.8	50.00	110	80-128	
Surr: Dibromofluoromethane	1868-53-7	55.0	50.00	110	80-124	
Surr: Toluene-d8	2037-26-5	53.8	50.00	108	77-129	

Report Date: 11/12/2014 Page 45 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-020Client Sample ID:TW4-02_10302014Collection Date:10/30/2014 712hReceived Date:10/31/2014 950h

Contact: Garrin Palmer

Qual

Analytical Results

Date Date Method Reporting Analytical Result Compound Units Prepared Analyzed Used Limit 3440 South 700 West Salt Lake City, UT 84119 Chloride 11/4/2014 2157h E300.0 10.0 45.5 mg/L Nitrate/Nitrite (as N) 11/3/2014 1243h 1.00 8.45 mg/L E353.2

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 26 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-020CClient Sample ID:TW4-02_10302014Collection Date:10/30/2014 712hReceived Date:10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

```
Kyle F. Gross
Laboratory Director
```

Jose Rocha QA Officer

Analyzed: 11/5/2014 1329h						
Units: µg/L	Dilution Fact	or: 50		Method:	SW8260C	
Compound		N	CAS	Reporting Limit	Analytical Result	Qual
Chloroform		e	7-66-3	50.0	3,580	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,930	2,500	117	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,730	2,500	109	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,720	2,500	109	80-124	
Surr: Toluene-d8	2037-26-5	2,600	2,500	104	77-129	
Units: µg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound		N	CAS I lumber	Reporting Limit	Analytical Result	Qual
-					•	Qual
Compound Carbon tetrachloride Chloromethane		5	umber	Limit	Result	Qual
Carbon tetrachloride		5	1 umber 6-23-5	Limit 1.00	Result 2.60	Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS	5	14-87-3	Limit 1.00 1.00 1.00	Result 2.60 < 1.00	Qual Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS 17060-07-0	5 7 7	6-23-5 4-87-3 5-09-2	Limit 1.00 1.00 1.00	Result 2.60 < 1.00	
Carbon tetrachloride Chloromethane Methylene chloride Surrogate		5 7 7 7 7 7 7 7 7 7	umber 6-23-5 4-87-3 5-09-2 Amount Spike	Limit 1.00 1.00 1.00 ed % REC	Result 2.60 < 1.00	
Carbon tetrachloride Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	5 7 7 Result 55.0	Aumber 6-23-5 4-87-3 5-09-2 Amount Spike 50.00	Limit 1.00 1.00 1.00 ed % REC 110	Result 2.60 < 1.00	

Report Date: 11/12/2014 Page 48 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NILLAC presscols. Pertinent sampling information in accated on the attached COC. Confidential fluttness Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any predict or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts an respectibility except for the date performance of inspection and/or analysis in good faith and according to the tude and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-010Client Sample ID:TW4-03_10232104Collection Date:10/23/2014 709hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1608h	E300.0	10.0	26.7	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1056h	E353.2	1.00	6.07	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 16 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-010CClient Sample ID:TW4-03_10232104Collection Date:10/23/2014 709hReceived Date:10/24/2014 950h

10/27/2014 1510h

Analytical Results

Analuzade

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Units: µg/L	Dilution Factor	: 1		Method:	SW8260C	
Compound			CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Resul	t Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	49.1	50.00	98.1	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.4	50.00	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	48.8	50.00	97.7	80-124	
Surr: Toluene-d8	2037-26-5	48.0	50.00	96.1	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact, This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-009Client Sample ID:TW4-03R_10222014Collection Date:10/22/2014 1008hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 2056h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1055h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 15 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the e-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-009CClient Sample ID:TW4-03R_10222014Collection Date:10/22/2014 1008hReceived Date:10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 10/28/2014 001h Units: μg/L	Dilution Facto	r: 1		Method:	SW8260C	
Compound			CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ced % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.7	50.00	103	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.0	50.00	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.3	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	50.3	50.00	101	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-007Client Sample ID:TW4-04_10212014Collection Date:10/21/2014 1341hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
City, UT 84119	Chloride	mg/L		11/2/2014 1552h	E300.0	10.0	40.0	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1052h	E353.2	1.00	7.02	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

3440

Salt Lake

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 13 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information. This report is provided for the exclusive one of the addressee. Privileges of subsequent use of the name of life company or any member of its staff, or reproduction of this report in connection with the advertisement, provided for the exclusive one of the information of this report in connection with the re-publication of this report for any purpose other than for the addressee will be addressee will be addressee will be addressee will be addressee of the tade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-007CClient Sample ID:TW4-04_10212014Collection Date:10/21/2014Neceived Date:10/24/2014950h

Analytical Results

Analyzed: 10/28/2014 217h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Units: µg/L	Dilution Fact	t or: 50		Method:	SW8260C	
Compound			CAS	Reporting Limit	Analytical Result	Qual
Chloroform		6	67-66-3	50.0	1,130	Q
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,630	2,500	105	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,620	2,500	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,560	2,500	102	80-124	
Surr: Toluene-d8	2037-26-5	2,480	2,500	99.4	77-129	
Analyzed: 10/27/2014 1412} Units: μg/L	Dilution Fact		CAS	Method:	SW8260C Analytical	
Compound			umber	Limit		Ond
			uniou	Linut	Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	Qual
						Qual
Carbon tetrachloride Chloromethane Methylene chloride		7	6-23-5	1.00	< 1.00	Qual
Chloromethane Methylene chloride	CAS	7	6-23-5 /4-87-3	1.00 1.00 1.00	< 1.00 < 1.00	Qual
Chloromethane Methylene chloride	CAS 17060-07-0	7	6-23-5 4-87-3 5-09-2	1.00 1.00 1.00	< 1.00 < 1.00 < 1.00	
Chloromethane Methylene chloride Surrogate		7 7 Result	6-23-5 4-87-3 5-09-2 Amount Spike	1.00 1.00 1.00 ed % REC	< 1.00 < 1.00 < 1.00 Limits	
Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	7 7 Result 49.0	6-23-5 4-87-3 5-09-2 Amount Spike 50.00	1.00 1.00 1.00 ed % REC 98.1	< 1.00 < 1.00 < 1.00 Limits 72-151	Qual Qual

Report Date: 11/12/2014 Page 33 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is localed on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/oi analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-007Client Sample ID:TW4-05_10282014Collection Date:10/28/2014 845hReceived Date:10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1654h	E300.0	10.0	45.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1211h	E353.2	1.00	8.31	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 13 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 1410466-007C Lab Sample ID: Client Sample ID: TW4-05 10282014 **Collection Date:** 10/28/2014 845h **Received Date:** 10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 11/4/2014 1452h Units: μg/L	Dilution Facto	or: 1		Method:	SW8260C	
Compound		I	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform		į	67 - 66-3	1.00	14.6	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	52.5	50.00	105	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	53.7	50.00	107	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.1	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	51.8	50.00	104	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 Lab Sample ID: 1410466-014 Client Sample ID: TW4-06_10292014 **Collection Date:** 10/29/2014 833h **Received Date:** 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/4/2014 1943h	E300.0	10.0	41.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1247h	E353.2	1.00	6.92	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt Lake

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 20 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-014CClient Sample ID:TW4-06_10292014Collection Date:10/29/2014 833hReceived Date:10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

```
Kyle F. Gross
Laboratory Director
```

Jose Rocha QA Officer

Analyzed: 11/5/2014 1034h						
Units: µg/L	Dilution Factor	: 10		Method:	SW8260C	
Compound		N	CAS I Jumber	Reporting Limit	Analytical Result	Qual
Chloroform		(57-66-3	10.0	723	*
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	576	500.0	115	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	541	500.0	108	80-128	
Surr: Dibromofluoromethane	1868-53-7	538	500,0	108	80-124	
Surr: Toluene-d8	2037-26-5	510	500.0	102	77-129	
	Dilution Factor	: 1		Method:	SW8260C	
	Dilution Factor	: 1				
Units: μg/L	Dilution Factor		CAS I Number	Method: Reporting Limit	SW8260C Analytical Result	Qual
Units: μg/L Compound	Dilution Factor	N		Reporting	Analytical	Qual
	Dilution Factor	N	lumber	Reporting Limit	Analytical Result	Qual
Units: μg/L Compound Carbon tetrachloride	Dilution Factor	N 	S6-23-5	Reporting Limit 1.00	Analytical Result < 1.00	Qual
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride	Dilution Factor	N 	56-23-5 74-87-3	Reporting Limit 1.00 1.00 1.00	Analytical Result < 1.00 < 1.00	Qual Qual
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride			56-23-5 74-87-3 75-09-2	Reporting Limit 1.00 1.00 1.00	Analytical Result < 1.00 < 1.00 < 1.00	
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride Surrogate	CAS	N 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Solumber 56-23-5 74-87-3 75-09-2 Amount Spike	Reporting Limit 1.00 1.00 1.00 2.00 2.00 2.00	Analytical Result < 1.00 < 1.00 < 1.00 Limits	
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	CAS 17060-07-0	N 51.3	Vumber 56-23-5 74-87-3 75-09-2 Amount Spike 50.00	Reporting Limit 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Analytical Result < 1.00 < 1.00 < 1.00 Limits 72-151	

Report Date: 11/12/2014 Page 42 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-018Client Sample ID:TW4-07_10302014Collection Date:10/30/2014 654hReceived Date:10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 2124h	E300.0	10.0	40.2	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1240h	E353.2	1.00	3.68	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 24 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-018CClient Sample ID:TW4-07_10302014Collection Date:10/30/2014 654hReceived Date:10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

```
Kyle F. Gross
Laboratory Director
```

Jose Rocha QA Officer

Analyzed: 11/5/2014 1250h						
Units: µg/L	Dilution Fact	or: 20		Method:	SW8260C	
Compound		N	CAS I lumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	67-66-3	20.0	926	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,160	1,000	116	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	1,130	1,000	113	80-128	
Surr: Dibromofluoromethane	1868-53-7	1,080	1,000	108	80-124	
Surr: Toluene-d8	2037-26-5	1,040	1,000	104	77-129	
Analyzed: 11/4/2014 2337h	Dilution Fact	or 1		Method	SW/8260C	
•	Dilution Fact	or: 1		Method:	SW8260C	
	Dilution Fact		CAS I umber	Method: Reporting Limit	SW8260C Analytical Result	Qual
Units: μg/L Compound	Dilution Fact	N		Reporting	Analytical	Qual
Units: μg/L	Dilution Fact	N 5	umber	Reporting Limit	Analytical Result	Qual
Units: µg/L Compound Carbon tetrachloride	Dilution Fact	N 5 7	umber 6-23-5	Reporting Limit 1.00	Analytical Result < 1.00	Qual
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride	Dilution Fact	N 5 7	6-23-5 4-87-3	Reporting Limit 1.00 1.00 1.00	Analytical Result < 1.00 < 1.00	Qual Qual
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride		N 5 7 7	6-23-5 4-87-3 5-09-2	Reporting Limit 1.00 1.00 1.00	Analytical Result < 1.00 < 1.00 < 1.00	
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride Surrogate	CAS	N 5 7 7 Result	fumber 6-23-5 4-87-3 5-09-2 Amount Spike	Reporting Limit 1.00 1.00 1.00 1.00 3.00	Analytical Result < 1.00 < 1.00 < 1.00 Limits	
Units: µg/L Compound Carbon tetrachloride Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	CAS 17060-07-0	N 5 7 7 Result 55.3	fumber 6-23-5 4-87-3 5-09-2 Amount Spike 50.00	Reporting Limit 1.00 1.00 1.00 1.00 1.00 1.100	Analytical Result < 1.00 < 1.00 < 1.00 Limits 72-151	

Report Date: 11/12/2014 Page 46 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Performation is located on the attached COC. Confidential Business Information: This report is provided for the exchains the of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the re-publication in this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the dee performance of inspection and/or analysis in good faith and according to the rules of the mule and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-011

 Client Sample ID:
 TW4-08_10292014

 Collection Date:
 10/29/2014 804h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

vest	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
119	Chloride	mg/L		11/4/2014 1835h	E300.0	10.0	46.7	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1223h	E353.2	0.100	0.914	

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

3440 South Salt Lake City, U

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 17 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential futures Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this report is provided for the reproduction of this report in connection with the events of the addressee. Brivileges of subsequent use of the addressee will be granted oily on contact. This company accepts are reproduction of this report for the due performance of inspection and/or analysis in good faith and according to the rules of the rade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-011CClient Sample ID:TW4-08_10292014Collection Date:10/29/2014 804hReceived Date:10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 11/4/2014 1925h U nits: μg/L	Dilution Factor	: 1		Method:	SW8260C	
Compound		1	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	191	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.3	50.00	109	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	54.5	50.00	109	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.8	50.00	106	80-124	
Surr: Toluene-d8	2037-26-5	51.8	50.00	104	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 39 of 62

All analyses approache to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is becard on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privile ex of subtraction of the addressee, or in connection with the mynolication of this report is connection with the mynolication of this report for any purpose other than for the addressee will be granted and according to the addressee.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-009Client Sample ID:TW4-09_10292014Collection Date:10/29/2014 748hReceived Date:10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1801h	E300.0	10.0	25.0	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1213h	E353.2	1.00	4.27	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 15 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Perment sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, provided on a sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no respectively for the day performance of inspection and/or analysis in good faith and accurding to the tudes of the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-009C

 Client Sample ID:
 TW4-09_10292014

 Collection Date:
 10/29/2014
 748h

 Received Date:
 10/31/2014
 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 11/4/2014 1530h **Dilution Factor:** 1 Units: µg/L Method: SW8260C CAS Reporting Analytical Compound Number Limit Result Qual Carbon tetrachloride 56-23-5 1.00 < 1.00 Chloroform 67-66-3 1.00101 Chloromethane 74-87-3 1.00 < 1.00 Methylene chloride 75-09-2 1.00 < 1.00 Surrogate CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 52.4 105 50.00 72-151 Surr: 4-Bromofluorobenzene 460-00-4 53.3 50.00 107 80-128 Surr: Dibromofluoromethane 1868-53-7 50.00 51.0 102 80-124 Surr: Toluene-d8 2037-26-5 50.9 50.00 102 77-129

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-022Client Sample ID:TW4-09R-10282014Collection Date:10/28/2014 916hReceived Date:10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/6/2014 001h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		11/11/2014 1215h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 28 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tade and of science.

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 1410466-022C Lab Sample ID: Client Sample ID: TW4-09R-10282014 **Collection Date:** 10/28/2014 916h **Received Date:** 10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 11/5/2014 838h						
Units: µg/L	Dilution Facto	or: 1		Method:	SW8260C	
Compound		5	CAS Num <mark>b</mark> er	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	58.3	50.00	117	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	55.7	50.00	111	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.1	50,00	108	80-124	
Surr: Toluene-d8	2037-26-5	51.9	50.00	104	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Report Date: 11/12/2014 Page 50 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-019

 Client Sample ID:
 TW4-10_10302014

 Collection Date:
 10/30/2014 703h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/4/2014 2140h	E300.0	10.0	75.2	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1241h	E353.2	1.00	13.2	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt L

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 25 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good failh and according to the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-019CClient Sample ID:TW4-10_10302014Collection Date:10/30/2014 703hReceived Date:10/31/2014 950h

Analytical Results

Analyzed: 11/5/2014 1310h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

```
Kyle F. Gross
Laboratory Director
```

Jose Rocha QA Officer

Units: µg/L	Dilution Factor	or: 20		Method:	SW8260C	
Compound			CAS I lumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	67-66-3	20.0	1,220	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	1,160	1,000	116	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	1,080	1,000	108	80-128	
Surr: Dibromofluoromethane	1868-53-7	1,080	1,000	108	80-124	
Surr: Toluene-d8	2037-26-5	1,030	1,000	103	77-129	
~ - The reporting limits were raised du Analyzed: 11/4/2014 2357h	ie to high analyte concen	trations.				
Units: µg/L	Dilution Factor	or: 1		Method:	SW8260C	
Compound			CAS I lumber	Reporting Limit	Analytical Result	Qual
A 1 A 11 A 1						- Yam
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
			6-23-5 74-87-3	1.00 1.00	< 1.00 < 1.00	
Chloromethane		7				
Chloromethane Methylene chloride	CAS	7	4-87-3	1.00 1.00	< 1.00	Qual
Chloromethane Methylene chloride	CAS 17060-07-0	7 7	24-87-3 25-09-2	1.00 1.00	< 1.00 < 1.00	
Chloromethane Methylene chloride		7 7 Result	4-87-3 5-09-2 Amount Spike	1.00 1.00 ed % REC	< 1.00 < 1.00 Limits	
	17060-07-0	7 7 Result 55.1	4-87-3 5-09-2 Amount Spike 50.00	1.00 1.00 ed % REC 110	< 1.00 < 1.00 Limits 72-151	

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-016

 Client Sample ID:
 TW4-11_10292014

 Collection Date:
 10/29/2014 907h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/4/2014 2016h	E300.0	10.0	56.4	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1233h	E353.2	1.00	7.33	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt La

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 22 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the addressee will be granted only on connection with the re-publication of this report in connection with the advertisement, promotion and sale of any product or process, or in connection with the re-publication of this report for my purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-016CClient Sample ID:TW4-11_10292014Collection Date:10/29/2014 907hReceived Date:10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Analyzed: 11/5/2014 1211h						
Units: µg/L	Dilution Factor	: 10		Method:	SW8260C	
Compound		N	CAS	Reporting Limit	Analytical Result	Qual
Chloroform		6	67-66-3	10.0	803	~
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	593	500.0	119	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	541	500.0	108	80-128	
Surr: Dibromofluoromethane	1868-53-7	555	500.0	111	80-124	
Surr: Toluene-d8	2037-26-5	520	500.0	104	77-129	
Units: µg/L	Dilution Factor	: 1		Method:	SW8260C	
			CAS	Reporting	Analytical	
Compound		N	CAS	Reporting Limit	Analytical Result	Qual
						Qual
Carbon tetrachloride		5	lumber	Limit	Result	Qual
Compound Carbon tetrachloride Chloromethane Methylene chloride		5	1 umber 16-23-5	Limit 1.00	Result < 1.00	Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS	5	Jumber 66-23-5 74-87-3	Limit 1.00 1.00 1.00	Result <1.00 <1.00	Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS 17060-07-0	5 7 7	4-87-3 25-09-2	Limit 1.00 1.00 1.00	Result < 1.00 < 1.00 < 1.00 < 1.00	
Carbon tetrachloride Chloromethane Methylene chloride Surrogate		5 7 7 Result	Tumber 66-23-5 74-87-3 75-09-2 Amount Spike	Limit 1.00 1.00 1.00 1.00 ed % REC	Result < 1.00	Qual Qual
Carbon tetrachloride Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	5 7 7 Result 55.1	Tumber 66-23-5 74-87-3 75-09-2 Amount Spike 50.00	Limit 1.00 1.00 1.00 2.00 2.00 2.00 2.00 1.00	Result < 1.00	

Report Date: 11/12/2014 Page 44 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached CDC Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its stuff, or reproduction of this report in connection with the expendication of this report for any purpose other than for the addressee will be granted with one contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the index and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-011Client Sample ID:TW4-12_10232014Collection Date:10/23/2014 719hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual	
t Lake City, UT 84119	Chloride	mg/L		11/2/2014 1625h	E300.0	10.0	50.2		
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1057h	E353.2	1.00	16.1		

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt L

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 17 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the allached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the cules of the tade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-011CClient Sample ID:TW4-12_10232014Collection Date:10/23/2014 719hReceived Date:10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

10/28/2014 021h Analyzed: **Dilution Factor:** 1 Method: SW8260C Units: µg/L CAS Reporting Analytical Number Limit Result Qual Compound Carbon tetrachloride 56-23-5 1.00 < 1.0067-66-3 1.00 < 1.00 Chloroform 74-87-3 Chloromethane 1.00 < 1.0075-09-2 Methylene chloride 1.00 < 1.00 Surrogate CAS % REC Result **Amount Spiked** Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 50.8 50.00 102 72-151 Surr: 4-Bromofluorobenzene 460-00-4 52.0 50.00 104 80-128 Surr: Dibromofluoromethane 1868-53-7 49,9 50.00 99.9 80-124 Surr: Toluene-d8 2037-26-5 49.5 50.00 98.9 77-129

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-014Client Sample ID:TW4-13_10232014Collection Date:10/23/2014 740hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1716h	E300.0	10.0	66.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1104h	E353.2	1.00	6.28	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 20 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information. This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the e-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trude and of science, the second secon

CAS

Number

56-23-5

67-66-3

74-87-3

75-09-2

Amount Spiked

50.00

50.00

50.00

50.00

Result

50.7

52.0

49.7

49.0

Dilution Factor: 1

CAS

17060-07-0

460-00-4

1868-53-7

2037-26-5

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-014CClient Sample ID:TW4-13_10232014Collection Date:10/23/2014 740hReceived Date:10/24/2014 950h

Analytical Results

Carbon tetrachloride

Units: µg/L

Compound

Chloroform

Surrogate

Chloromethane

Methylene chloride

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Analyzed: 10/27/2014 2029h

Contact: Garrin Palmer

Method:

Reporting

Limit

1.00

1.00

1.00

1.00

% REC

101

104

99.4

98.1

Test Code: 8260-W

Qual

Qual

VOAs by GC/MS Method 8260C/5030C

SW8260C

Analytical

Result

< 1.00

< 1.00

< 1.00

< 1.00

Limits

72-151

80-128

80-124

77-129

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 40 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact, This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tude and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-015Client Sample ID:TW4-14_10232014Collection Date:10/23/2014 746hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1824h	E300.0	10.0	38.9	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1110h	E353.2	1.00	5.22	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 21 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 1410353-015C Lab Sample ID: Client Sample ID: TW4-14_10232014 **Collection Date:** 10/23/2014 746h **Received Date:** 10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 10/27/2014 2127h						
Units: µg/L	Dilution Facto	r: 1		Method:	SW8260C	
Compound		Γ	CAS] Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform		ĩ	67-66-3	1.00	1.68	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	50.0	50.00	100	72-151	
Surr: 4-Bromofluorobenzene	460- <mark>00-</mark> 4	50.6	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	49.7	50.00	99.4	80-124	
Surr: Toluene-d8	2037-26-5	47.7	50.00	95.4	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 41 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-005

 Client Sample ID:
 MW-26_10212014

 Collection Date:
 10/21/2014
 1328h

 Received Date:
 10/24/2014
 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1444h	E300.0	10.0	<u>60.1</u>	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1045h	E353.2	0.100	0.934	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 11 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in coancection with the advertisement, promotion or sale of any product or process or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-005C

 Client Sample ID:
 MW-26_10212014

 Collection Date:
 10/21/2014
 1328h

 Received Date:
 10/24/2014
 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Analyzed: 10/28/2014 138h		60		Mathealt	GW92(AC)	
Units: µg/L	Dilution Fact	or: 50		Method:	SW8260C	
Compound			CAS I umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	50.0	2,090	8
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,660	2,500	106	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	2,510	2,500	100	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,560	2,500	103	80-124	
Surr: Toluene-d8	2037-26-5	2,500	2,500	99.9	77-129	
Units: µg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound			CAS I umber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
		7	5-09-2	1.00	23.2	
Methylene chloride		/				
Methylene chloride Surrogate	CAS	Result	Amount Spike	d % REC	Limits	Qual
	CAS 17060-07-0			od % REC 98.7		Qual
Surrogate		Result	Amount Spike		Limits	Qual
Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	Result	Amount Spike	98.7	Limits 72-151	Qual

Report Date: 11/12/2014 Page 31 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trude and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-015

 Client Sample ID:
 TW4-16_10292014

 Collection Date:
 10/29/2014 840h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1959h	E300.0	10.0	92.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1231h	E353.2	1.00	8.40	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 21 of 62

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the aame of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-015C

 Client Sample ID:
 TW4-16_10292014

 Collection Date:
 10/29/2014 840h

 Received Date:
 10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Analyzed: 11/5/2014 1054h						
Units: μg/L	Dilution Factor	: 10		Method:	SW8260C	
Compound		ľ	CAS I Number	Reporting Limit	Analytical Result	Qual
Chloroform		(57-66-3	10.0	387	÷.
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	568	500.0	114	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	537	500.0	107	80-128	
Surr: Dibromofluoromethane	1868-53-7	545	500.0	109	80-124	
Surr: Toluene-d8	2037-26-5	520	500.0	104	77-129	
Analyzed: 11/4/2014 2239h Units: μg/L	Dilution Factor	: 1		Method:	SW8260C	
Compound		N	CAS I Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		4	56-23-5	1.00	< 1.00	
Chloromethane		5	74-87-3	1.00	< 1.00	
Methylene chloride		5	75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.2	50.00	112	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	54.8	50.00	110	80-128	
Surr: Dibromofluoromethane	1868-53-7	54.1	50.00	108	80-124	
Surr: Toluene-d8	2037-26-5	52.3				

Report Date: 11/12/2014 Page 43 of 62

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-005

 Client Sample ID:
 MW-32_10292014

 Collection Date:
 10/29/2014
 1320h

 Received Date:
 10/31/2014
 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1620h	E300.0	10.0	34.9	
	Nitrate/Nitrite (as N)	mg/L		11/11/2014 1213h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 11 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-005CClient Sample ID:MW-32_10292014Collection Date:10/29/2014 1320hReceived Date:10/31/2014 950h

Analytical Results

Analyzed: 11/4/2014 1413h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Units: µg/L	Dilution Facto	r: 1		Method:	SW8260C	
Compound		N	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		4	56-23-5	1.00	< 1.00	
Chloroform		e	67-66-3	1.00	< 1.00	
Chloromethane		5	74-87-3	1.00	< 1.00	
Methylene chloride		2	75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.2	50.00	102	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.2	50.00	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.0	50.00	100	80-124	
Surr: Toluene-d8	2037-26-5	50.9	50.00	102	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 33 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trude and of science.

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 Lab Sample ID: 1410466-008 Client Sample ID: TW4-18_10282014 **Collection Date:** 10/28/2014 857h **Received Date:** 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1711h	E300.0	10.0	40.8	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1212h	E353.2	1.00	11.1	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Report Date: 11/12/2014 Page 14 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of lue name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tade and of science.

CAS

Number

56-23-5

67-66-3

74-87-3

75-09-2

Amount Spiked

50.00

50.00

50.00

50.00

Result

53.2

54.5

51.1

51.4

Dilution Factor: 1

CAS

17060-07-0

460-00-4

1868-53-7

2037-26-5

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-008CClient Sample ID:TW4-18_10282014Collection Date:10/28/2014 857hReceived Date:10/31/2014 950h

Analytical Results

Carbon tetrachloride

Units: µg/L

Compound

Chloroform

Surrogate

Chloromethane

Methylene chloride

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Analyzed: 11/4/2014 1511h

Contact: Garrin Palmer

Method:

Reporting

Limit

1.00

1.00

1.00

1.00

% REC

106

109

102

103

Test Code: 8260-W

Qual

Qual

VOAs by GC/MS Method 8260C/5030C

SW8260C

Analytical

Result

< 1.00

33.0

< 1.00

< 1.00

Limits

72-151

80-128

80-124

77-129

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date:	11/12/2014	Page 36 of 62
--------------	------------	---------------

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement. promotion or sale of any product or process, or in connection with the re-publication of this report is provided for the exclusive use of the any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-008

 Client Sample ID:
 TW4-19_10212014

 Collection Date:
 10/21/2014 1415h

 Received Date:
 10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1354h	E300.0	100	130	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1053h	E353.2	1.00	4.72	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 14 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-008CClient Sample ID:TW4-19_10212014Collection Date:10/21/2014 1415hReceived Date:10/24/2014 950h

Analytical Results

Analyzed: 10/28/2014 236h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Units: μg/L	Dilution Facto	or: 50		Method:	SW8260C	
Compound		N	CAS Jumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	50.0	4,310	a.
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	2,640	2,500	106	72-151	
Sutr: 4-Bromofluorobenzene	460-00-4	2,570	2,500	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	2,580	2,500	103	80-124	
Surr: Toluene-d8	2037-26-5	2,480	2,500	99.4	77-129	
Analyzed: 10/27/2014 14311 Units: μg/L	Dilution Facto	or: 1		Method:	SW8260C	
Compound		N	CAS 1 umber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	4.80	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	47.8	50.00	95.6	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.8	50.00	97.6	80-128	
Surr: Dibromofluoromethane	1868-53-7	48.7	50.00	97.4	80-124	
Surr: Toluene-d8	2037-26-5	47.0	50.00	94.0	77-129	

Report Date: 11/12/2014 Page 34 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-004

 Client Sample ID:
 TW4-20_10212014

 Collection Date:
 10/21/2014
 1322h

 Received Date:
 10/24/2014
 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/2/2014 1337h	E300.0	100	292	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1043h	E353.2	1.00	7.67	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt La

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 10 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in coancetion with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-004C

 Client Sample ID:
 TW4-20_10212014

 Collection Date:
 10/21/2014
 1322h

 Received Date:
 10/24/2014
 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Analyzed: 10/28/2014 119h Units: μg/L	Dilution Factor	500		Method:	SW8260C	
Compound		N	CAS I lumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	500	23,300	-
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	26,100	25,000	104	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	25,800	25,000	103	80-128	
Surr: Dibromofluoromethane	1868-53-7	25,600	25,000	103	80-124	
Surr: Toluene-d8	2037-26-5	25,300	25,000	101	77-129	
Units: µg/L	Dilution Factor	1		Method:	SW8260C	
			C46 1			
Compound			CAS I lumber	Reporting Limit	Analytical Result	Qual
· · · · · · · · · · · · · · · · · · ·		N		Reporting	Analytical	Qual
Compound Carbon tetrachloride Chloromethane		N 5	lumber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		N 5 7	1 umber 6-23-5	Reporting Limit 1.00	Analytical Result 18.5	Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS	N 5 7	fumber 6-23-5 4-87-3	Reporting Limit 1.00 1.00 1.00	Analytical Result 18.5 4.04	Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS 17060-07-0	N 5 7 7	6-23-5 4-87-3 5-09-2	Reporting Limit 1.00 1.00 1.00	Analytical Result 18.5 4.04 2.38	
Carbon tetrachloride Chloromethane Methylene chloride Surrogate		N 5 7 7 Result	10000000000000000000000000000000000000	Reporting Limit 1.00 1.00 1.00 3.00 3.00	Analytical Result 18.5 4.04 2.38 Limits	
Carbon tetrachloride Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	N 5 7 7 7 Result 43,9	umber 6-23-5 4-87-3 5-09-2 Amount Spike 50.00	Reporting Limit 1.00 1.00 1.00 3.00 87.8	Analytical Result 18.5 4.04 2.38 Limits 72-151	

Report Date: 11/12/2014 Page 30 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-012

 Client Sample ID:
 TW4-21_10292014

 Collection Date:
 10/29/2014 & 813h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1258h	E300.0	100	252	
	Nitrate/Nitrite (as N)	mg/L	_	11/3/2014 1227h	E353.2	1.00	10.0	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 18 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-012C

 Client Sample ID:
 TW4-21_10292014

 Collection Date:
 10/29/2014 813h

 Received Date:
 10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Analyzed: 11/5/2014 917h						
Units: µg/L	Dilution Factor	: 10		Method:	SW8260C	
Compound		N	CAS I Jumber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	10.0	229	ř.
Surrogate	CAS	Result	Amount Spike	d % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	564	500.0	113	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	537	500.0	107	80-128	
Surr: Dibromofluoromethane	1868-53-7	533	500.0	107	80-124	
Surr: Toluene-d8	2037-26-5	509	500.0	102	77-129	
Units: µg/L	Dilution Factor	: 1		Method:	SW8260C	
Compound		N	CAS I umber	Reporting Limit	Analytical Result	Qual
						Qual
Carbon tetrachloride		5	umber	Limit	Result	Qual
Compound Carbon tetrachloride Chloromethane Methylene chloride		5	umber 6-23-5	Limit 1.00	Result 1.04	Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS	5	fumber 6-23-5 4-87-3	Limit 1.00 1.00 1.00	Result 1.04 < 1.00	Qual
Carbon tetrachloride Chloromethane Methylene chloride	CAS 17060-07-0	5 7 7	fumber 6-23-5 4-87-3 5-09-2	Limit 1.00 1.00 1.00	Result 1.04 < 1.00	
Carbon tetrachloride Chloromethane Methylene chloride Surrogate	404/01/15/24/00	5 7 7 Result	fumber 6-23-5 4-87-3 5-09-2 Amount Spike	Limit 1.00 1.00 1.00 d % REC	Result 1.04 < 1.00	
Carbon tetrachloride Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	5 7 7 Result 56.1	fumber 6-23-5 4-87-3 5-09-2 Amount Spike 50.00	Limit 1.00 1.00 1.00 d % REC 112	Result 1.04 < 1.00	

Report Date: 11/12/2014 Page 40 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-003

 Client Sample ID:
 TW4-22_10212014

 Collection Date:
 10/21/2014
 1313h

 Received Date:
 10/24/2014
 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1320h	E300.0	100	596	1.1
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1119h	E353.2	10.0	54.9	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 9 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the allached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tude and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-003CClient Sample ID:TW4-22_10212014Collection Date:10/21/2014 1313hReceived Date:10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

```
Kyle F. Gross
Laboratory Director
```

Jose Rocha QA Officer

Analyzed: 10/28/2014 059h						
Units: µg/L	Dilution Factor	: 500		Method:	SW8260C	
Compound			CAS I umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	500	12,400	2
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	26,500	25,000	106	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	26,000	25,000	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	25,400	25,000	101	80-124	
Surr: Toluene-d8	2037-26-5	24,900	25,000	99.7	77-129	
Units: µg/L	Dilution Factor	-	CAS I	Method:	SW8260C	
Compound			umber	Limit	Result	Qual
		56-23-5				
Carbon tetrachloride		5	6-23-5	1.00	3.32	
Carbon tetrachloride Chloromethane			6-23-5 4-87-3	1.00 1.00	3.32 1.61	
		7				
Chloromethane Methylene chloride	CAS	7	4-87-3	1.00 1.00	1.61	Qual
Chloromethane Methylene chloride	CAS 17060-07-0	7	4-87-3 5-09-2	1.00 1.00	1.61 < 1.00	Qual
Chloromethane Methylene chloride Surrogate		7 7 Result	4-87-3 5-09-2 Amount Spike	1.00 1.00	1.61 < 1.00 Limits	Qual
Chloromethane Methylene chloride Surrogate Surr: 1,2-Dichloroethane-d4	17060-07-0	7 7 Result 49.4	4-87-3 5-09-2 Amount Spike 50.00	1.00 1.00 ed % REC 98.8	1.61 < 1.00 Limits 72-151	Qual

Report Date: 11/12/2014 Page 29 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of lite name of this company or any member of its slaff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in coanection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-004Client Sample ID:TW4-23_10282014Collection Date:10/28/2014 830hReceived Date:10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1603h	E300.0	10.0	46.8	
	Nitrate/Nitrite (as N)	mg/L		11/11/2014 1211h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 10 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 Lab Sample ID: 1410466-004C Client Sample ID: TW4-23 10282014 **Collection Date:** 10/28/2014 830h **Received Date:** 10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 11/4/2014 1353h U nits: μg/L	Dilution Facto	or: 1		Method:	SW8260C	
Compound		CAS Number		Reporting Limit	Analytical Result	Qual
Carbon tetrachloride	4	:	56-23-5	1.00	< 1.00	
Chloroform		(67-66-3	1.00	< 1.00	
Chloromethane		í	74-87-3	1.00	< 1.00	
Methylene chloride		1	75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.5	50.00	103	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.0	50.00	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.8	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	50.4	50.00	101	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 32 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-002

 Client Sample ID:
 TW4-24_10212014

 Collection Date:
 10/21/2014
 1305h

 Received Date:
 10/24/2014
 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1303h	E300.0	100	1,050	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1118h	E353.2	10.0	35.7	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 8 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-002CClient Sample ID:TW4-24_10212014Collection Date:10/21/2014 1305hReceived Date:10/24/2014 950h

Analytical Results

Analyzed: 10/27/2014 1216h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Units: µg/L **Dilution Factor:** 1 Method: SW8260C CAS Reporting Analytical Number Limit Result Qual Compound Carbon tetrachloride 56-23-5 1.00 < 1.00 67-66-3 1.00 Chloroform 25.8 Chloromethane 74-87-3 1.00 < 1.00 75-09-2 Methylene chloride 1.00 < 1.00 CAS Result **Amount Spiked** % REC Limits Surrogate Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 48.0 50.00 96.1 72-151 460-00-4 49.2 50.00 98.3 80-128 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane 47.0 1868-53-7 50.00 94.1 80-124 Surr: Toluene-d8 2037-26-5 47.2 94.5 77-129 50.00

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 11/12/2014 Page 28 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-001

 Client Sample ID:
 TW4-25_10212014

 Collection Date:
 10/21/2014 1252h

 Received Date:
 10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/5/2014 2310h	E300.0	10.0	58.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1037h	E353.2	0.100	1.03	Ε.

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 7 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

CAS

Number

56-23-5

67-66-3

74-87-3

75-09-2

Amount Spiked

50.00

50.00

50.00

50.00

Result

47.1

49.0

46.8

47.3

Dilution Factor: 1

CAS

17060-07-0

460-00-4

1868-53-7

2037-26-5

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-001C

 Client Sample ID:
 TW4-25_10212014

 Collection Date:
 10/21/2014
 1252h

 Received Date:
 10/24/2014
 950h

10/27/2014 824h

Analytical Results

μg/L

Carbon tetrachloride

Analyzed:

Compound

Chloroform

Surrogate

Chloromethane

Methylene chloride

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Units:

Contact: Garrin Palmer

Method:

Reporting

Limit

1.00

1.00

1.00

1.00

% REC

94.2

97.9

93.7

94.5

Test Code: 8260-W

Qual

Qual

VOAs by GC/MS Method 8260C/5030C

SW8260C

Analytical

Result

< 1.00

< 1.00

< 1.00

< 1.00

Limits

72-151

80-128

80-124

77-129

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date:	11/12/2014	Page 27	of 55
--------------	------------	---------	-------

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trude and of science,

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-006

 Client Sample ID:
 TW4-26_10282014

 Collection Date:
 10/28/2014 836h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1637h	E300.0	10.0	14.6	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1209h	E353.2	1.00	12.3	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 12 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tude and of science.

CAS

Number

56-23-5

67-66-3

74-87-3

75-09-2

Result

49.8

51.5

48.7

49.4

Amount Spiked

50.00

50.00

50.00

50.00

Dilution Factor: 1

CAS

17060-07-0

460-00-4

1868-53-7

2037-26-5

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-006C

 Client Sample ID:
 TW4-26_10282014

 Collection Date:
 10/28/2014
 836h

 Received Date:
 10/31/2014
 950h

Analytical Results

Carbon tetrachloride

Units: µg/L

Compound

Chloroform

Surrogate

Chloromethane

Methylene chloride

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Analyzed: 11/4/2014 1432h

Contact: Garrin Palmer

Method:

Reporting

Limit

1.00

1.00

1.00

1.00

% REC

99.5

103

97.4

98.9

Test Code: 8260-W

Qual

Qual

VOAs by GC/MS Method 8260C/5030C

SW8260C

Analytical

Result

< 1.00

2.45

< 1.00

< 1.00

Limits

72-151

80-128

80-124

77-129

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 I	Page 34	of 62
---------------------------	---------	-------

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the attackesse. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report in connection and/or analysis in good faith and according to the rules of the lands and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-017Client Sample ID:TW4-27_10232014Collection Date:10/23/2014 & 802hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/2/2014 1931h	E300.0	10.0	24.4	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1113h	E353.2	10.0	28.2	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt La

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 23 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-017CClient Sample ID:TW4-27_10232014Collection Date:10/23/2014 & 802hReceived Date:10/24/2014 950h

10/27/2014 2205h

Analytical Results

Analyzed:

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

SW8260C **Dilution Factor:** 1 Method: Units: µg/L CAS Reporting Analytical Number Limit Result Qual Compound Carbon tetrachloride 56-23-5 1.00 < 1.00Chloroform 67-66-3 1.00 < 1.00 Chloromethane 74-87-3 1.00 < 1.00 Methylene chloride 75-09-2 1.00 < 1.00 CAS % REC Surrogate Result **Amount Spiked** Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 51.4 50.00 103 72-151 Surr: 4-Bromofluorobenzene 460-00-4 50.3 50.00 101 80-128 Surr: Dibromofluoromethane 1868-53-7 50.2 50.00 100 80-124 Surr: Toluene-d8 2037-26-5 49.0 50.00 98.1 77-129

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-012Client Sample ID:TW4-28_10232014Collection Date:10/23/2014 726hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1642h	E300.0	10.0	52.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1101h	E353.2	1.00	16.5	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 18 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-012CClient Sample ID:TW4-28_10232014Collection Date:10/23/2014 726hReceived Date:10/24/2014 950h

Analytical Results

Analyzed: 10/28/2014 040h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Units: µg/L Dilution Factor: 1 Method: SW8260C CAS Reporting Analytical Number Limit Result Qual Compound Carbon tetrachloride 56-23-5 1.00 < 1.00 Chloroform 67-66-3 1.00 < 1.00 Chloromethane 74-87-3 1.00 < 1.00 75-09-2 Methylene chloride 1.00 < 1.00 Surrogate CAS Result **Amount Spiked** % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 53.3 50.00 107 72-151 Surr: 4-Bromofluorobenzene 460-00-4 53.8 50.00 108 80-128 Surr: Dibromofluoromethane 1868-53-7 50.9 50.00 102 80-124 Surr: Toluene-d8 2037-26-5 50.00 77-129 51.0 102

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 38 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-013Client Sample ID:TW4-29_10292014Collection Date:10/29/2014 824hReceived Date:10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/4/2014 1926h	E300.0	10.0	41.0	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1229h	E353.2	1.00	3.64	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 11/12/2014 Page 19 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in councection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact, This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tade and of science,

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-013CClient Sample ID:TW4-29_10292014Collection Date:10/29/2014 824hReceived Date:10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Analyzed: 11/5/2014 1015h						
Units: µg/L	Dilution Factor	: 10		Method:	SW8260C	
Compound			CAS I umber	Reporting Limit	Analytical Result	Qual
Chloroform		6	7-66-3	10.0	290	~
Surrogate	CAS	Result	Amount Spike	d % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	580	500.0	116	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	552	500.0	110	80-128	
Surr: Dibromofluoromethane	1868-53-7	542	500.0	108	80-124	
Surr: Toluene-d8	2037-26-5	520	500.0	104	77-129	
Units: µg/L	Dilution Factor	. 1		Method:	SW8260C	
Compound			CAS I umber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surrogate Surr: 1,2-Dichloroethane-d4	CAS 17060-07-0	Result	Amount Spike	ed % REC	Limits 72-151	Qual
						Qual
	17060-07-0	55.6	50.00	111	72-151	Qual

Report Date: 11/12/2014 Page 41 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trules of the trude and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-018Client Sample ID:TW4-30_10232014Collection Date:10/23/2014 & 808hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 1948h	E300.0	10.0	37.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1114h	E353.2	0.100	1.84	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 24 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols Perlinent sampling information is located on the atlached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science,

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-018C

 Client Sample ID:
 TW4-30_10232014

 Collection Date:
 10/23/2014 808h

 Received Date:
 10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 44 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tudes of the trade and of science.

Units: µg/L	Dilution Factor	1		Method:	SW8260C	
Compound		1	CAS] Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	49.5	50.00	99.0	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.6	50.00	97.1	80-128	
Surr: Dibromofluoromethane	1868-53-7	48.3	50.00	96.5	80-124	
Surr: Toluene-d8	2037-26-5	47.5	50.00	95.1	77-129	

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-001

 Client Sample ID:
 TW4-31_10282014

 Collection Date:
 10/28/2014 808h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1439h	E300.0	10.0	30.0	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1155h	E353.2	0.100	1.23	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 7 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-001CClient Sample ID:TW4-31_10282014Collection Date:10/28/2014 808hReceived Date:10/31/2014 950h

11/4/2014 823h

Analytical Results

Analyzed:

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Dilution Factor: 1 Method: SW8260C Units: µg/L CAS Reporting Analytical Number Compound Limit Result Qual Carbon tetrachloride 56-23-5 1.00 < 1.00Chloroform 67-66-3 1.00 < 1.00 Chloromethane 74-87-3 1.00 < 1.00 Methylene chloride 75-09-2 < 1.00 1.00 CAS Surrogate Result % REC Limits **Amount Spiked** Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 54.4 50.00 109 72-151 Surr: 4-Bromofluorobenzene 460-00-4 53.8 50.00 108 80-128 Surr: Dibromofluoromethane 1868-53-7 50.00 51.7 103 80-124 Surr: Toluene-d8 2037-26-5 51.0 50.00 102 77-129

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-013

 Client Sample ID:
 TW4-32_10232014

 Collection Date:
 10/23/2014 734h

 Received Date:
 10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/2/2014 1659h	E300.0	10.0	62.6	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1103h	E353.2	1.00	2.14	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt L

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 19 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tude and of science,

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 1410353-013C Lab Sample ID: Client Sample ID: TW4-32_10232014 **Collection Date:** 10/23/2014 734h **Received Date:** 10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Units: µg/L	Dilution Factor	r: 1		Method:	SW8260C	
Compound		N	CAS I Sumber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloroform		6	57-66-3	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	50.5	50.00	101	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	48.5	50.00	97.0	80-128	
Surr: Dibromofluoromethane	1868-53-7	49.0	50.00	97.9	80-124	
Surr: Toluene-d8	2037-26-5	47.8	50.00	95.6	77-129	

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-010

 Client Sample ID:
 TW4-33_10292014

 Collection Date:
 10/29/2014 757h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1818h	E300.0	10.0	44.2	
	Nitrate/Nitrite (as N)	mg/L		11/4/2014 1529h	E353.2	1.00	2.22	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 16 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC_Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 **Project:** Lab Sample ID: 1410466-010C Client Sample ID: TW4-33 10292014 **Collection Date:** 10/29/2014 757h **Received Date:** 10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 11/4/2014 1550h Units: μg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound		N	CAS Sumber	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	6-23-5	1.00	< 1.00	
Chloroform		6	67-66-3	1.00	124	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	5-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	53.9	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	53.8	50.00	108	80-128	
Surr: Dibromofluoromethane	1868-53-7	52.2	50.00	104	80-124	
Surr: Toluene-d8	2037-26-5	52.0	50.00	104	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 38 of 62

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Perlinent sampling information is located on the attached COC Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or peroduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-002Client Sample ID:TW4-34_10282014Collection Date:10/28/2014 & 815hReceived Date:10/31/2014 & 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/4/2014 1530h	E300.0	10.0	17.5	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1204h	E353.2	0.100	1.16	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 8 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-002C

 Client Sample ID:
 TW4-34_10282014

 Collection Date:
 10/28/2014 & 815h

 Received Date:
 10/31/2014 & 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 11/4/2014 843h Units: μg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound]	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spi	ked % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	54.1	50.00	108	72-151	
Surr: 4-Bromofluorobenzene	46 <mark>0-00-4</mark>	52.7	50.00	105	80-128	
Surr: Dibromofluoromethane	1868-53-7	51.2	50.00	102	80-124	
Surr: Toluene-d8	2037-26-5	50.3	50.00	101	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 11/12/2014 Page 30 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the adverlisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rules of the rules of the rules and of science

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410466-003

 Client Sample ID:
 TW4-35_10282014

 Collection Date:
 10/28/2014 822h

 Received Date:
 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/4/2014 1547h	E300.0	10.0	34.1	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1205h	E353.2	0.100	0.351	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt L

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 9 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertiment sampling information is located on the atlached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-003CClient Sample ID:TW4-35_10282014Collection Date:10/28/2014 822hReceived Date:10/31/2014 950h

Analytical Results

Analyzed: 11/4/2014 1334h

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Units: µg/L	Dilution Facto	r: 1		Method:	SW8260C	
Compound		I	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	52.6	50.00	105	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	54.6	50.00	109	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.6	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	51.2	50.00	102	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-016Client Sample ID:TW4-36_10232014Collection Date:10/23/2014 755hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
t Lake City, UT 84119	Chloride	mg/L		11/2/2014 1915h	E300.0	10.0	67.3	
	Nitrate/Nitrite (as N)	mg/L		11/11/2014 1224h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Salt

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 22 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in coancection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good failh and according to the rules of the trade and of science.

 Client:
 Energy Fuels Resources, Inc.

 Project:
 4th Quarter Chloroform 2014

 Lab Sample ID:
 1410353-016C

 Client Sample ID:
 TW4-36_10232014

 Collection Date:
 10/23/2014 755h

 Received Date:
 10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Units: µg/L	Dilution Fact	or: 1		Method:	SW8260C	
Compound		N	CAS R lumber	eporting Limit	Analytical Result	Qual
Carbon tetrachloride		5	56-23-5	1.00	< 1.00	
Chloroform		e	67-66-3	1.00	< 1.00	
Chloromethane		7	4-87-3	1.00	< 1.00	
Methylene chloride		7	75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spiked	N W REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	49.3	50.00	98.6	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	50.6	50.00	101	80-128	
Surr: Dibromofluoromethane	1868-53-7	48.2	50.00	96.4	80-124	
Surr: Toluene-d8	2037-26-5	48.1	50.00	96.3	77-129	

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-020Client Sample ID:TW4-60_10232014Collection Date:10/23/2014 830hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

0 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
e City, UT 84119	Chloride	mg/L		11/2/2014 2146h	E300.0	1.00	< 1.00	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1117h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

3440 Salt Lake

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 26 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good failb and according to the trude and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-020CClient Sample ID:TW4-60_10232014Collection Date:10/23/2014 830hReceived Date:10/24/2014 950h

10/27/2014 2303h

Analytical Results

Analyzed:

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Units: µg/L	Dilution Facto	or: 1		Method:	SW8260C	
Compound		1	CAS Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spik	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.2	50,00	102	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	52.2	50.00	104	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.3	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	50.2	50.00	100	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 46 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tude and of science.

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410353-019Client Sample ID:TW4-65_10232014Collection Date:10/23/2014 719hReceived Date:10/24/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/2/2014 2005h	E300.0	10.0	49.7	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1129h	E353.2	1.00	15.2	

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 25 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good failh and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. **Project:** 4th Quarter Chloroform 2014 1410353-019C Lab Sample ID: Client Sample ID: TW4-65 10232014 **Collection Date:** 10/23/2014 719h **Received Date:** 10/24/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analyzed: 10/27/2014 2244h						
Units: µg/L	Dilution Factor	r: 1		Method:	SW8260C	
Compound			CAS] Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< 1.00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.7	50.00	103	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	53.2	50.00	106	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.2	50.00	101	80-124	
Surr: Toluene-d8	2037-26-5	49.6	50.00	99.2	77-129	

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 11/12/2014 Page 45 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good failh and according to the rules of the trade and of science.

Client: Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 **Project:** Lab Sample ID: 1410466-021 Client Sample ID: TW4-70 10282014 **Collection Date:** 10/28/2014 845h **Received Date:** 10/31/2014 950h

Contact: Garrin Palmer

Analytical Results

3440 South 700 West	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84119	Chloride	mg/L		11/5/2014 2056h	E300.0	10.0	44.5	
	Nitrate/Nitrite (as N)	mg/L		11/3/2014 1251h	E353.2	1.00	8.64	т

' - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Report Date: 11/12/2014 Page 27 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Periment sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the aldressee will be granted only on contact. This company accepts no reproscibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science

CAS

Number

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-021CClient Sample ID:TW4-70_10282014Collection Date:10/28/2014 845hReceived Date:10/31/2014 950h

11/5/2014 819h

Analytical Results

Analyzed:

Compound

Units: µg/L

Contact: Garrin Palmer

Test Code: 8260-W

Qual

Qual

VOAs by GC/MS Method 8260C/5030C

SW8260C

Analytical

Result

< 1.00

15.0

< 1.00

< 1.00

Limits

72-151

80-128

80-124

77-129

Method:

Reporting

Limit

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Carbon tetrachloride 56-23-5 1.00 Chloroform 67-66-3 1.00 Chloromethane 74-87-3 1.00 Methylene chloride 75-09-2 1.00 CAS % REC Surrogate Result **Amount Spiked** Surr: 1,2-Dichloroethane-d4 17060-07-0 56.9 50.00 114 Surr: 4-Bromofluorobenzene 460-00-4 52.8 50.00 106 Surr: Dibromofluoromethane 1868-53-7 53.2 50.00 106 Surr: Toluene-d8 2037-26-5 51.3 50.00 103

Dilution Factor: 1

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014 Page 49 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Client: Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 **Project:** Lab Sample ID: 1410353-021A Client Sample ID: Trip Blank **Collection Date:** 10/21/2014 10/24/2014 950h **Received Date:**

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

VOAs by GC/MS Method 8260C/5030C

3440 South 700 Wes Salt Lake City, UT 8411

Phone: (801) 263-868 Toll Free: (888) 263-868 Fax: (801) 263-868' e-mail: awal@awal-labs.com

web: www.awal-labs.con

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Analyzed: 10/27/2014 2342h Units: μg/L	Dilution Factor	: 1		Method:	SW8260C	
Compound		2	CAS] Number	Reporting Limit	Analytical Result	Qual
Carbon tetrachloride			56-23-5	1.00	< <u>1</u> .00	
Chloroform			67-66-3	1.00	< 1.00	
Chloromethane			74-87-3	1.00	< 1.00	
Methylene chloride			75-09-2	1.00	< 1.00	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: 1,2-Dichloroethane-d4	17060-07-0	51.9	50.00	104	72-151	
Surr: 4-Bromofluorobenzene	460-00-4	51.0	50.00	102	80-128	
Surr: Dibromofluoromethane	1868-53-7	50.1	50.00	100	80-124	
Surr: Toluene-d8	2037-26-5	49.8	50.00	99.5	77-129	

Client:Energy Fuels Resources, Inc.Project:4th Quarter Chloroform 2014Lab Sample ID:1410466-023AClient Sample ID:Trip BlankCollection Date:10/28/2014Received Date:10/31/2014 950h

Analytical Results

Contact: Garrin Palmer

Test Code: 8260-W

Qual

Qual

VOAs by GC/MS Method 8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.con

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 11/12/2014	Page 51	of 62
-------------------------	---------	-------

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report in connection with the advertisement, promotion or analysis in good faith and according to the rules of the trade and of science.

Analyzed: 11/5/2014 114h					
Units: µg/L	Dilution Fact	tor: 1		Method:	SW8260C
Compound		N	CAS	Reporting Limit	Analytical Result
Carbon tetrachloride		5	6-23-5	1.00	< 1.00
Chloroform		6	7-66-3	1.00	< 1.00
Chloromethane		7	4-87-3	1.00	< 1.00
Methylene chloride		7	5-09-2	1.00	< 1.00
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits
Surr: 1,2-Dichloroethane-d4	17060-07-0	56.4	50.00	113	72-151
Surr: 4-Bromofluorobenzene	460-00-4	53.6	50.00	107	80-128
Surr: Dibromofluoromethane	1868-53-7	53.2	50.00	106	80-124
Surr: Toluene-d8	2037-26-5	51.6	50.00	103	77-129

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

	RE: 4th Quarter Chloroform 2014						
3440 South 700 West	Dear Garrin Palmer:	Lab Set ID: 1410353					
Salt Lake City, UT 84119	American West Analytical Laboratories received 21 sa analyses presented in the following report.	mple(s) on 10/24/2014 for the					
Phone: (801) 263-8686	American West Analytical Laboratories (AWAL) is ac						
Toll Free: (888) 263-8686	Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, and Missouri.						
Fax: (801) 263-8687	sure descented in Colorado, radio, reen monteo, and missoull.						
e-mail: awal@awal-labs.com	All analyses were performed in accordance to the NELAP protocols unless noted						
web: www.awal-labs.com	otherwise. Accreditation scope documents are available upon request. If you have an questions or concerns regarding this report please feel free to call.						
	The abbreviation "Surr" found in organic reports indica intentionally added by the laboratory to determine same	e 1					
Kyle F. Gross	purging efficiency. The "Reporting Limit" found on th						
Laboratory Director	practical quantitation limit (PQL). This is the minimum concentration that can be						
Jose Rocha	reported by the method referenced and the sample matr						
	confused with any regulatory limit. Analytical results are reported to three significant						
QA Officer	figures for quality control and calculation purposes.						

Thank You,

Approved by:

Report Date: 11/12/2014 Page 1 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

SAMPLE SUMMARY

Client: Project: Lab Set ID: Date Received: Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 1410353 10/24/2014 950h Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
3440 South 700 West	1410353-001A	TW4-25_10212014	10/21/2014 1252h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1410353-001B	TW4-25_10212014	10/21/2014 1252h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-001C	TW4-25_10212014	10/21/2014 1252h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1410353-002A	TW4-24_10212014	10/21/2014 1305h	Aqueous	Anions, E300.0
	1410353-002B	TW4-24_10212014	10/21/2014 1305h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1410353-002C	TW4-24_10212014	10/21/2014 1305h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1410353-003A	TW4-22_10212014	10/21/2014 1313h	Aqueous	Anions, E300.0
	1410353-003B	TW4-22_10212014	10/21/2014 1313h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1410353-003C	TW4-22_10212014	10/21/2014 1313h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-004A	TW4-20_10212014	10/21/2014 1322h	Aqueous	Anions, E300.0
Kyle F. Gross	1410353-004B	TW4-20_10212014	10/21/2014 1322h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1410353-004C	TW4-20_10212014	10/21/2014 1322h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-005A	MW-26_10212014	10/21/2014 1328h	Aqueous	Anions, E300.0
Jose Rocha	1410353-005B	MW-26_10212014	10/21/2014 1328h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1410353-005C	MW-26_10212014	10/21/2014 1328h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-006A	MW-04_10212014	10/21/2014 1335h	Aqueous	Anions, E300.0
	1410353-006B	MW-04_10212014	10/21/2014 1335h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-006C	MW-04_10212014	10/21/2014 1335h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-007A	TW4-04_10212014	10/21/2014 1341h	Aqueous	Anions, E300.0
	1410353-007B	TW4-04_10212014	10/21/2014 1341h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-007C	TW4-04_10212014	10/21/2014 1341h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-008A	TW4-19_10212014	10/21/2014 1415h	Aqueous	Anions, E300.0
	1410353-008B	TW4-19_10212014	10/21/2014 1415h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-008C	TW4-19_10212014	10/21/2014 1415h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-009A	TW4-03R_10222014	10/22/2014 1008h	Aqueous	Anions, E300.0
	1410353-009B	TW4-03R_10222014	10/22/2014 1008h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-009C	TW4-03R_10222014	10/22/2014 1008h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-010A	TW4-03_10232104	10/23/2014 709h	Aqueous	Anions, E300.0
	1410353-010B	TW4-03_10232104	10/23/2014 709h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 11/12/2014 Page 2 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Client:

Project:

Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 Lab Set ID: 1410353 Date Received: 10/24/2014 950h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
2440 G 1 700 W	1410353-010C	TW4-03_10232104	10/23/2014 709h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West	1410353-011A	TW4-12_10232014	10/23/2014 719h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1410353-011B	TW4-12_10232014	10/23/2014 719h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-011C	TW4-12_10232014	10/23/2014 719h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1410353-012A	TW4-28_10232014	10/23/2014 726h	Aqueous	Anions, E300.0
	1410353-012B	TW4-28_10232014	10/23/2014 726h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1410353-012C	TW4-28_10232014	10/23/2014 726h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1410353-013A	TW4-32_10232014	10/23/2014 734h	Aqueous	Anions, E300.0
	1410353-013B	TW4-32_10232014	10/23/2014 734h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1410353-013C	TW4-32_10232014	10/23/2014 734h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-014A	TW4-13_10232014	10/23/2014 740h	Aqueous	Anions, E300.0
Kyle F. Gross	1410353-014B	TW4-13_10232014	10/23/2014 740h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1410353-014C	TW4-13_10232014	10/23/2014 740h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-015A	TW4-14_10232014	10/23/2014 746h	Aqueous	Anions, E300.0
Jose Rocha	1410353-015B	TW4-14_10232014	10/23/2014 746h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1410353-015C	TW4-14_10232014	10/23/2014 746h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-016A	TW4-36_10232014	10/23/2014 755h	Aqueous	Anions, E300.0
	1410353-016B	TW4-36_10232014	10/23/2014 755h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-016C	TW4-36_10232014	10/23/2014 755h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-017A	TW4-27_10232014	10/23/2014 802h	Aqueous	Anions, E300.0
	1410353-017B	TW4-27_10232014	10/23/2014 802h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-017C	TW4-27_10232014	10/23/2014 802h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-018A	TW4-30_10232014	10/23/2014 808h	Aqueous	Anions, E300.0
	1410353-018B	TW4-30_10232014	10/23/2014 808h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-018C	TW4-30_10232014	10/23/2014 808h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-019A	TW4-65_10232014	10/23/2014 719h	Aqueous	Anions, E300.0
	1410353-019B	TW4-65_10232014	10/23/2014 719h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410353-019C	TW4-65_10232014	10/23/2014 719h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410353-020A	TW4-60_10232014	10/23/2014 830h	Aqueous	Anions, E300.0
	1410353-020B	TW4-60_10232014	10/23/2014 830h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 11/12/2014 Page 3 of 55

All analyses applicable to the CWA. SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:

Project:

Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 Lab Set ID: 1410353 **Date Received:** 10/24/2014 950h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
	1410353-020C	TW4-60_10232014	10/23/2014 830h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West Salt Lake City, UT 84119	1410353-021A	Trip Blank	10/21/2014	Aqueous	VOA by GC/MS Method 8260C/5030C

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Inorganic Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 4th Quarter Chloroform 2014 1410353
3440 South 700 West	Sample Receipt Information:	
Salt Lake City, UT 84119	Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies:	10/24/2014 10/21-10/23/2014 Intact None
Phone: (801) 263-8686		
Toll Free: (888) 263-8686		ements: The analysis and preparation for the od holding times. The samples were properly
Fax: (801) 263-8687	preserved.	
e-mail: awal@awal-labs.com	Drenewation and Analysis Dequirements	The complex were enclosed following the
web: www.awal-labs.com	methods stated on the analytical reports.	s: The samples were analyzed following the
Kyle F. Gross	Analytical QC Requirements: All in requirements were met. All internal standard	nstrument calibration and calibration check d recoveries met method criterion.
Laboratory Director	Batch QC Requirements: MB, LCS, MS,	MSD, RPD:
Jose Rocha	Method Blanks (MB): No target indicating that the procedure was from	analytes were detected above reporting limits, ee from contamination.
QA Officer	Laboratory Control Samples (Le limits, indicating that the preparation	CS): All LCS recoveries were within control n and analysis were in control.
		blicates (MS/MSD): All percent recoveries and ces) were inside established limits, with the

Sample ID	Analyte	QC	Explanation
1410353-001B	Nitrate-Nitrite (as N)	MS/MSD	Sample matrix interference

Corrective Action: None required.

Volatile Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 4th Quarter Chloroform 2014 1410353
3440 South 700 West	Sample Receipt Information:	
Salt Lake City, UT 84119	Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies:	10/24/2014 10/21-10/23/2014 Intact None
Phone: (801) 263-8686	Method:	SW-846 8260C/5030C
Toll Free: (888) 263-8686	Analysis:	Volatile Organic Compounds
Fax: (801) 263-8687	Committee Material	· · · · · · · · · · · · · · · · · · ·
e-mail: awal@awal-labs.com	General Set Comments: Multiple targ	get analytes were observed above reporting limits.
web: www.awal-labs.com	containers and properly preserved.	direments: All samples were received in appropriate The analysis and preparation of all samples were times following the methods stated on the analytical
Kyle F. Gross	Analytical QC Requirements: A	All instrument calibration and calibration check
Laboratory Director	requirements were met. All internal sta	
Jose Rocha	Batch QC Requirements: MB, LCS,	MS, MSD, RPD, and Surrogates:
QA Officer	Method Blanks (MBs): No to indicating that the procedure w	arget analytes were detected above reporting limits, as free from contamination.
		ble / Laboratory Control Sample Duplicate and LCSD recoveries were within control limits, and analysis were in control.
		Duplicates (MS/MSD): All percent recoveries and rences) were inside established limits, indicating no
	Surrogates: All surrogate reco	overies were within established limits.

Corrective Action: None required.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

NALYTICAL LAB				QC.	JUIMIN									
Lab Set ID:	Energy Fuels Resources 1410353 4th Quarter Chloroform						Contact: Dept: QC Type:	Garrin Pa WC LCS	llmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	: LCS-R72575 300.0-W	Date Analyzed:	11/02/201	4 1156h										
Chloride		5.08	mg/L	E300.0	0.00751	0.100	5.000	0	102	90 - 110				
Lab Sample ID Test Code:	: LCS-R72715 300.0-W	Date Analyzed:	11/05/201	4 1535h										
Chloride		5.14	mg/L	E300.0	0.00751	0.100	5.000	0	103	90 - 110				
Lab Sample ID Test Code:	: LCS-R72608 NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1035h					_					
Nitrate/Nitrite	(as N)	1.04	mg/L	E353.2	0.00833	0.0100	1.000	0	104	90 - 110				
Lab Sample ID Test Code:	: LCS-R72901 NO2/NO3-W-353.2	Date Analyzed:	11/11/201	4 1126h										
Nitrate/Nitrite	(as N)	1.06	mg/L	E353.2	0.00833	0,0100	1.000	0	106	90 - 110				

Report Date: 11/12/2014 Page 48 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Lab Set ID: 1	Energy Fuels Resourc 410353 th Quarter Chlorofor						Contact: Dept: QC Type:	Garrin Pa WC MBLK	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MBLK-R72575 300.0-W	Date Analyzed:	11/02/20	914 1139h										
Chloride		< 0.100	mg/L	E300.0	0.00751	0.100								_

-						
Lab Sample ID: Test Code:	MB-R72715 300.0-W	Date Analyzed:	11/05/201	4 1519h		
Chloride		< 0.100	mg/L	E300.0	0.00751	0.100
Lab Sample ID: Test Code:	MB-R72608 NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1034h		
Nitrate/Nitrite (as	s N)	< 0.0100	mg/L	E353.2	0.00833	0.0100
Lab Sample ID: Test Code:	MB-R72901 NO2/NO3-W-353.2	Date Analyzed:	11/11/201	4 1123h		
Nitrate/Nitrite (a	s N)	< 0.0100	mg/L	E353_2	0.00833	0.0100

Report Date: 11/12/2014 Page 49 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the addressee of the addressee privileges of subsequent use of the addressee, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Nitrate/Nitrite (as N)

Nitrate/Nitrite (as N)

Test Code:

Lab Sample ID: 1411097-001DMS

NO2/NO3-W-353.2

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

Client: E	nergy Fuels Resources	, Inc.					Contact:	Garrin Pa	lmer					
Lab Set ID: 14	410353						Dept:	WC						
Project: 41	th Quarter Chloroform	2014					QC Type:	MS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1410353-001AMS 300.0-W	Date Analyzed:	11/02/201	4 1229h										
Chloride		559	mg/L	E300.0	0.751	10.0	500.0	58.1	100	90 - 110				
Lab Sample ID: Test Code:	1410353-005AMS 300.0-W	Date Analyzed:	11/02/201	4 1501h										
Chloride		110	mg/L	E300.0	0.0751	1.00	50.00	60.1	99.4	90 - 110				
Lab Sample ID: Test Code:	1410353-015AMS 300.0-W	Date Analyzed:	11/02/201	4 1841h										
Chloride		88.7	mg/L	E300.0	0.0751	1.00	50.00	38.9	99.7	90 - 110				
Lab Sample ID: Test Code:	1410353-009AMS 300.0-W	Date Analyzed:	11/02/201	4 2113h							_			
Chloride		5.15	mg/L	E300.0	0.00751	0.100	5.000	0	103	90 - 110				
Lab Sample ID: Test Code:	1410466-022AMS 300.0-W	Date Analyzed:	11/06/201	4 018h										
Chloride		5.08	mg/L	E300.0	0.00751	0.100	5.000	0	102	90 - 110				
Lab Sample ID: Test Code:	1410353-001BMS NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1038h										
Nitrate/Nitrite (a	s N)	1.86	mg/L	E353.2	0.00833	0.0100	1.000	1.03	82.7	90 - 110				ų.
Lab Sample ID: Test Code:	1410353-011BMS NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1121h										

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

111

1.03

mg/L

mg/L

Date Analyzed: 11/11/2014 1131h

E353.2

E353.2

0.833

0.00833

Report Date: 11/12/2014 Page 50 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

1.00

0.0100

100.0

1.000

16.1

0

95.3

103

90 - 110

90 - 110

C L P

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

OC SUMMARY REPORT

Kyle F. Gross Laboratory Director

RPD

Jose Rocha QA Officer

Client:	Energy Fuels Resources, In	nc.					Contact:	Garrin Pa	lmer		
Lab Set ID:	1410353						Dept:	WC			
Project:	4th Quarter Chloroform 20	14					QC Type	: MSD			
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt
Lab Sample I	D: 1410353-001AMSD	Date Analyzed:	11/02/201	4 1246h							

Analyte		Result	Units	Method	MDL	Limit	Spiked	Amount	%REC	Limits	Amt	% RPD	Limit	Qual
Lab Sample ID: Test Code:	1410353-001AMSD 300.0-W	Date Analyzed:	11/02/201	4 1246h										
Chloride		562	mg/L	E300.0	0.751	10.0	500.0	58.1	101	90 - 110	559	0.601	20	
Lab Sample ID: Test Code:	1410353-005AMSD 300.0-W	Date Analyzed:	11/02/201	4 1518h										
Chloride		109	mg/L	E300.0	0.0751	1.00	50.00	60.1	98.0	90 - 110	110	0.660	20	
Lab Sample ID: Test Code:	1410353-015AMSD 300.0-W	Date Analyzed:	11/02/201	4 1858h										
Chloride		88.5	mg/L	E300.0	0.0751	1.00	50.00	38.9	99.3	90 - 110	88.7	0.240	20	
Lab Sample ID: Test Code:	1410353-009AMSD 300.0-W	Date Analyzed:	11/02/201	4 2129h										
Chloride		5.26	mg/L	E300.0	0.00751	0.100	5.000	0	105	90 - 110	5.15	2.05	20	
Lab Sample ID: Test Code:	1410466-022AMSD 300.0-W	Date Analyzed:	11/06/201	4 035h										
Chloride		5.08	mg/L	E300.0	0.00751	0.100	5.000	0	102	90 - 110	5.08	0.115	20	
Lab Sample ID: Test Code:	1410353-001BMSD NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1039h										
Nitrate/Nitrite (as	s N)	1.88	mg/L	E353.2	0.00833	0.0100	1.000	1.03	85.1	90 - 110	1.86	1.28	10	đ.
Lab Sample ID: Test Code:	1410353-011BMSD NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1122h										
Nitrate/Nitrite (as	s N)	120	mg/L	E353.2	0.833	1.00	100.0	16.1	104	90 - 110	111	7.43	10	
Lab Sample ID: Test Code:	1411097-001DMSD NO2/NO3-W-353.2	Date Analyzed:	11/11/201	4 1132h										
Nitrate/Nitrite (as	s N)	1.04	mg/L	E353.2	0.00833	0.0100	1.000	0	104	90 - 110	1.03	0.965	10	

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Report Date: 11/12/2014 Page 51 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Surr: Toluene-d8

50.1

μg/L

SW8260C

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

OC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha OA Officer

ANALYTICAL LABORATORIES			yer										
Client: Energy Fuels Resources	s, Inc.					Contact:	Garrin Pa	lmer					
Lab Set ID: 1410353						Dept:	MSVOA	*					
Project: 4th Quarter Chloroform	n 2014					QC Type:	LCS						
Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-3 102714ATest Code:8260-W	Date Analyzed:	10/27/201	l4 727h										
Chloroform	20.0	μg/L	SW8260C	0.153	2.00	20.00	0	99.8	67 - 132				
Methylene chloride	18.9	μg/L ·	SW8260C	0.172	2.00	20.00	0	94.7	32 - 185				
Surr: 1,2-Dichloroethane-d4	45.3	μg/L	SW8260C			50.00		90.5	76 - 138				
Surr: 4-Bromofluorobenzene	48.5	µg/L	SW8260C			50.00		97.1	77 - 121				
Surr: Dibromofluoromethane	47.4	μg/L	SW8260C			50.00		94.7	67 - 128				
Surr: Toluene-d8	47.6	µg/L	SW8260C			50.00		95.3	81 - 135				
Lab Sample ID:LCS VOC-3 102714BTest Code:8260-W	Date Analyzed:	10/27/201	4 1911h										
Chloroform	21.1	μg/L	SW8260C	0.153	2.00	20.00	0	105	67 - 132				
Methylene chloride	19.0	μg/L	SW8260C	0.172	2.00	20.00	0	95.1	32 - 185				
Surr: 1,2-Dichloroethane-d4	49.1	µg/L	SW8260C			50.00		98.2	76 - 138				
Surr: 4-Bromofluorobenzene	50.7	μg/L	SW8260C			50.00		101	77 - 121				
Surr: Dibromofluoromethane	49.7	μg/L	SW8260C			50.00		99.4	67 - 128				

50.00

100

81 - 135

Report Date: 11/12/2014 Page 52 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Chloromethane

Methylene chloride

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

< 1.00

< 1.00

46.7

48.7

μg/L

µg/L

µg/L

μg/L

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: Energy Fuels Resources,	, Inc.					Contact:	Garrin Pa	lmer					
Lab Set ID: 1410353						Dept:	MSVOA						
Project: 4th Quarter Chloroform	2014					QC Type	: MBLK						
Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 102714A Test Code: 8260-W	Date Analyzed:	10/27/20	14 805h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.504	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.153	1.00								

1.00

1.00

50.00

50.00

93.3

97.4

76 - 138

77 - 121

0.163

0.172

SW8260C

SW8260C

SW8260C

SW8260C

Surr: Dibromofluoromethane Surr: Toluene-d8	46.9 47.5	μg/L μg/L	SW8260C SW8260C			50.00 50.00		3.9 5.0	67 - 128 81 - 135	
Lab Sample ID: MB VOC-3 102714B Test Code: 8260-W	Date Analyzed:	10/27/20	14 1950h							
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.504	1.00					
Chloroform	< 1.00	μg/L	SW8260C	0.153	1.00					
Chloromethane	< 1.00	μg/L	SW8260C	0.163	1.00					
Methylene chloride	< 1.00	µg/L	SW8260C	0.172	1.00					
Surr: 1,2-Dichloroethane-d4	50.6	μg/L	SW8260C			50.00	10	01	76 - 138	
Surr: 4-Bromofluorobenzene	51.4	μg/L	SW8260C			50.00	10	03	77 - 121	
Surr: Dibromofluoromethane	49.7	μg/L	SW8260C			50.00	99	9.4	67 - 128	
Surr: Toluene-d8	49.1	µg/L	SW8260C			50.00	98	8.2	81 - 135	

Report Date: 11/12/2014 Page 53 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:Energy Fuels ResourcesLab Set ID:1410353Project:4th Quarter Chloroform						Contact: Dept: QC Type:	Garrin Pa MSVOA MS	lmer					
Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1410353-001CMS Test Code: 8260-W	Date Analyzed:	10/27/201	4 922h										
Chloroform	20.9	μg/L	SW8260C	0.153	2.00	20.00	0	104	50 - 146				
Methylene chloride	19.1	μg/L	SW8260C	0.172	2.00	20.00	0	95.5	30 - 192				
Surr: 1,2-Dichloroethane-d4	47.0	μg/L	SW8260C			50.00		94.0	72 - 151				
Surr: 4-Bromofluorobenzene	46.8	μg/L	SW8260C			50.00		93.6	80 - 128				
Surr: Dibromofluoromethane	47.5	μg/L	SW8260C			50.00		94.9	80 - 124				
Surr: Toluene-d8	47.6	μg/L	SW8260C			50.00		95.2	77 - 129				
Lab Sample ID: 1410353-013CMS Test Code: 8260-W	Date Analyzed:	10/27/201	4 2048h										
Chloroform	19.6	μg/L	SW8260C	0.153	2,00	20.00	0	98.2	50 - 146				
Methylene chloride	18.1	μg/L	SW8260C	0.172	2,00	20.00	0	90.7	30 - 192				

50.00

50.00

50.00

50.00

101

102

98.6

96.7

72 - 151

80 - 128

80 - 124

77 - 129

SW8260C

SW8260C

SW8260C

SW8260C

50.5

50.8

49.3

48.4

μg/L

μg/L

μg/L

µg/L

Report Date: 11/12/2014 Page 54 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rule

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Garrin Palmer

MSVOA

Contact:

QC Type: MSD

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1410353
Project:	4th Ouarter Chloroform 2014

Апаlyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1410353-001CMSD Test Code: 8260-W	Date Analyzed:	10/27/201	4 942h										
Chloroform	19.9	μg/L	SW8260C	0.153	2.00	20.00	0	99.6	50 - 146	20.9	4.66	25	
Methylene chloride	18.4	μg/L	SW8260C	0.172	2.00	20.00	0	92.2	30 - 192	19.1	3.52	25	
Surr: 1,2-Dichloroethane-d4	45.2	μg/L	SW8260C			50.00		90.5	72 - 151				
Surr: 4-Bromofluorobenzene	45.6	μg/L	SW8260C			50.00		91.2	80 - 128				
Surr: Dibromofluoromethane	45.4	μg/L	SW8260C			50.00		90.8	80 - 124				
Surr: Toluene-d8	44.4	µg/L	SW8260C			50.00		88.7	77 - 129				
Lab Sample ID: 1410353-013CMSD	Date Analyzed:	10/27/201	4 2107h										
Test Code: 8260-W													
G11 G													
Chloroform	20.7	μg/L	SW8260C	0.153	2.00	20.00	0	103	50 - 146	19.6	5.26	25	
Methylene chloride	20.7 18.7	μg/L μg/L	SW8260C SW8260C	0.153 0.172	2.00 2.00	20.00 20.00	0 0	103 93.6	50 - 146 30 - 192	19.6 18.1	5.26 3.20	25 25	
							-						
Methylene chloride	18.7	μg/L	SW8260C			20.00	-	93.6	30 - 192				
Methylene chloride Surr: 1,2-Dichloroethane-d4	18.7 50.0	μg/L μg/L	SW8260C SW8260C			20.00 50.00	-	93.6 100	30 - 192 72 - 151				

Report Date: 11/12/2014 Page 55 of 55

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of rules of the rules of rule

American	West	Analytical	Laboratories
----------	------	------------	--------------

WORK O	RDER Summary				Work Order:	141	10353	Page 1 of 4
Client:	Energy Fuels Resources, Inc.				Due Date:	11/4/	/2014	
Client ID:	DEN100		Contact:	Garrin Palmer				
Project:	4th Quarter Chloroform 2014		OC Leve	I: III	WO Type	Proj	ect	
Comments:	PA Rush. QC 3 (Summary/No chrom Jenn. J-flag what we can't meet. EIM							- see
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1410353-001A	TW4-25_10212014	10/21/2014 1252h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df-wc	
1410353-001B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2N		Second of		
1410353-001C				8260-W		~	VOCFridge	2
-				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	_		_
1410353-002A	TW4-24_10212014	10/21/2014 1305h	10/24/2014 0950h		Aqueous	V	df - wc	
1 1 1 2 2 2 2 2 2 2 2 2				1 SEL Analytes: CL			15 24 2	
1410353-002B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		\checkmark	df - no2/no3	
1410353-002C				8260-W		\checkmark	VOCFridge	1
				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4		2003	
1410353-003A	TW4-22_10212014	10/21/2014 1313h	10/24/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	✓	df-wc	Ţ
1410353-003B				NO2/NO3-W-353.2		~	df - no2/no3	
				I SEL Analytes: NO3NO2N				
1410353-003C				8260-W		~	VOCFridge	1
				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4			
1410353-004A	TW4-20_10212014	10/21/2014 1322h	10/24/2014 0950h	300.0-W	Aqueous	\checkmark	df - wc	3
1410353 0040				1 SEL Analytes: CL			df - no2/no3	
1410353-004B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	ui - no2/no3	
1410353-004C				8260-W		V	VOCFridge	2
				Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	<u></u>		
1410353-005A	MW-26_10212014	10/21/2014 1328h	10/24/2014 0950h	300.0-W	Aqueous		df - wc	1
				1 SEL Analytes: CL				
1410353-005B				NO2/NO3-W-353.2		~	df - no2/no3	
1410252 0050				1 SEL Analytes: NO3NO2N		E a	VOCE 'I	
1410353-005C				8260-W		~	VOCFridge	

WORK O	RDER Summary				Work Order:	14	10353	Page 2 of 4
Client:	Energy Fuels Resources, Inc.				Due Date:	11/4	/2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1410353-006A	MW-04_10212014	10/21/2014 1335h	10/24/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	~	df-wc	
1410353-006B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		\checkmark	df - no2/no3	
1410353-006C				8260-W	; # of Analytes: 4 / # of Surr: 4		VOCFridge	
1410353-007A	TW4-04_10212014	10/21/2014 1341h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df - wc	
1410353-007B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1410353-007C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4		VOCFridge	1
1410353-008A	TW4-19_10212014	10/21/2014 1415h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous		df-wc	
1410353-008B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1410353-008C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	\checkmark	VOCFridge	
1410353-009A	TW4-03R_10222014	10/22/2014 1008h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous		df-wc	
1410353-009B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		✓	df - no2/no3	
1410353-009C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	\checkmark	VOCFridge	
1410353-010A	TW4-03_10232104	10/23/2014 0709h	10/24/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	\checkmark	df-wc	
1410353-010B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
1410353-010C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	\checkmark	VOCFridge	
1410353-011A	TW4-12_10232014	10/23/2014 0719h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	\checkmark	df - wc	1
1410353-011B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		~	df - no2/no3	
1410353-011C				8260-W	; # of Analytes: 4 / # of Surr: 4	~	VOCFridge	
1410353-012A	TW4-28_10232014	10/23/2014 0726h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous		df-wc	
Printed: 11/4/2014	FOR LABORATORY USE ONLY [fill out on page	ge 1]: %M 🗌 RT 🛄			нок нок	_ (COC Emailed	

WORK O	RDER Summary				Work Order:	14	10353	Page 3 of 4
Client:	Energy Fuels Resources, Inc.				Due Date:	11/4	/2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1410353-012B	TW4-28_10232014	10/23/2014 0726h	10/24/2014 0950h	NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N	Aqueous		df - no2/no3	
1410353-012C				8260-W Test Group: 8260-W-Custom,	:#of Analytes: 4 / # of Surr: 4	~	VOCFridge	
1410353-013A	TW4-32_10232014	10/23/2014 0734h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df - wc	
1410353-013B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df-no2/no3	
1410353-013C				8260-W Test Group: 8260-W-Custom	: # of Analytes: 4 / # of Surr: 4		VOCFridge	3
1410353-014A	TW4-13_10232014	10/23/2014 0740h	10/24/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	✓	df - wc	
1410353-014B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1410353-014C				8260-W Test Group: 8260-W-Custom	: # of Analytes: 4 / # of Surr: 4	~	VOCFridge	
1410353-015A	TW4-14_10232014	10/23/2014 0746h	10/24/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous		df-wc	
1410353-015B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1410353-015C				8260-W Test Group: 8260-W-Custom	: # of Analytes: 4 / # of Surr: 4	2	VOCFridge	
1410353-016A	TW4-36_10232014	10/23/2014 0755h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df - wc	
1410353-016B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1410353-016C				8260-W Test Group: 8260-W-Custom	: # of Analytes: 4 / # of Surr: 4		VOCFridge	3
1410353-017A	TW4-27_10232014	10/23/2014 0802h	10/24/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous		df-wc	3
1410353-017B	4			NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1410353-017C				8260-W	; # of Analytes: 4 / # of Surr: 4	~	VOCFridge	
1410353-018A	TW4-30_10232014	10/23/2014 0808h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous		df - wc	
1410353-018B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		~	df - no2/no3	

WORK O	RDER Summary				Work Orde	r: 14	10353	Page 4 of 4
Client:	Energy Fuels Resources, Inc.				Due Date	e: 11/4	4/2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1410353-018C	TW4-30_10232014	10/23/2014 0808h	10/24/2014 0950h	8260-W Test Group: 8260-W-Ca	Aqueous ustom; # of Analytes: 4 / # of Surr:	4	VOCFridge	3
1410353-019A	TW4-65_10232014	10/23/2014 0719h	10/24/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df-wc	1
1410353-019B				NO2/NO3-W-353.2 I SEL Analytes: NO3N	02N		df - no2/no3	
1410353-019C				8260-W Test Group: 8260-W-Ca	ustom; # of Analytes: 4 / # of Surr:	4	VOCFridge	3
1410353-020A	TW4-60_10232014	10/23/2014 0830h	1 <mark>0/24/2014 0950h</mark>	300.0-W 1 SEL Analytes: CL	Aqueous	~	df-wc	1
1410353-020B				NO2/NO3-W-353.2 1 SEL Analytes: NO3No	02N	✓	df - no2/no3	
1410353-020C				8260-W Test Group: 8260-W-Ci	ustom; # of Analytes: 4 / # of Surr:	4	VOCFridge	3
1410353-021A	Trip Blank	10/21/2014	10/24/2014 0950h	8260-W Test Group: 8260-W-Ci	Aqueous ustom; # of Analytes: 4 / # of Surr:	4	VOCFridge	3

Analytical Labor 463 W. 3600 S. Salt Lake C	American West Analytical Laboratories 463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686							LAP accred	lited meth	ods and all da		WAL's standard analyte lists and reporting y and/or attactived documentation.	1410353 AWAL Lab Sample Set # Page 1 of 2
Fax # (801) 263-8687 Email www.awal-labs.				Q	C Lev	el:			Turr	Around Standard	lime:	Unless other arrangements have been mede, signed reports will be emailed by 5:00 pm on tho day they are due.	Due Date:
Client: Energy Fuels Resources, Inc. Address: 6425 S. Hwy. 191 Blanding, UT 84511 Blanding, UT 84511 Contact: Garrin Palmer Phone #: (435) 678-2221 Cell # gpalmer@energyfuels.com; KWeinel@energyfuels.com 4th Quarter Chloroform 2014												X Include EDD: LOCUS UPLOAD EXCEL Field Filtered For: For Compliance With: NELAP RCRA CWA SDWA ELAP / A2LA	Laboratory Use Only Santales Ware Fed Ex- Shipped orhand delivered Ambient o Chilad Teinperature C Received Brokani seeing (Improperty Seeper
Project Kaine. Project #: PO #: Sampler Name: Tanner Holliday	Date	Time	# of Containers	Sample Matrix NO2 / NO3 (353.2)	CI (4500 or 300.0)	VOCs (8260C)						NLLAP Non-Compliance Other: Known Hazards &	5 Betrety Preserved N N Biorstod at bench Y N 6 Roceved Within reiding Timus
Sample ID: TW4-25_10212014	Sampled 10/21/14	Sampled 1252	# 0 5 v	_	-				-		+	Sample Comments	
TW4-24_10212014	10/21/14	1305	5 v	-	-	-	+ +		1				And Andrew States
TW4-22_10212014	10/21/14	1313	5 v	v x	x	x			-				COC Tape Wat: 1 Present on Outer Package
TW4-20_10212014	10/21/14	1322	5 4	v x	x	: x							2. Unibroken on Outer Packade
MW-26_10212014	10/21/14	1328	5 1	v x	x	x		-					Y N NA
MW-04_10212014	10/21/14	1335	5 1	N X	x	x					\mathbf{T}		3 Prosent on Sample
FW4-04_10212014	10/21/14	1341	5 1	N X	x	x							4 Unbroken on Sample
FW4-19_10212014	10/21/14	1415	5 1	N X	x	x							Y N NA
FW4-03R_10222014	10/22/14	1008	5	N X	x	x							Discropancies Botween Samplo
TW4-03_10232104	10/23/14	709	5 1	N X	x	x						-	Labels and COC Record?
TW4-12_10232014	10/23/14	719	5 1	w x	x	x			1				
TW4-28_10232014	10/23/14	726	5 1	w x	x	x x							
TW4-32_10232014	10/23/14	734	5 1	w x	x	x x							
Relinguished by: Carin John	Date: 10/23/14	Received by:				_			Date:			Special Instructions:	
Print Name: Garrin Palme- Relinquished by: Signature	Time	Print Name: Received by: Signature	/	/	_	/	~		Time: Dale: Timo:			See the Analytical Scope of Wo analyte list.	ork for Reporting Limits and V
Print Name: Relinquished by:	Date:	Brint Name: Received by: —		-		_		-	Dale:			-	
Signature	Pline:	Signature							Time:				
trint Name: tellinquished by: ignature	Date; Time:	Print Name: Received by Signature	10	AL	40	Ê	ren	N	Dato: Time:	102	114	-	
hter Nume		Print Name	20A	MS.	24	21	u	M		- 9	30		

DB 10/24/14

Analytical Lab 463 W, 3600 S, Sait Lake	American West Analytical Laboratories 463 W. 3600 S. Satt Lake Clby, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686							CHAIN OF CUSTODY All enalysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and report limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.											
Fax # (801) 263-8687 Email				QC	C Leve	ıl:		1	т	urn Arc	ound Ti	me:	-	Unless other arrangements have been made,	Due Date:				
www.awal-labs	.com				3	_				Sta	ndard			signed reports will be entitled by \$100 pm on the day they are due.					
Client: Energy Fuels Resources, Inc.			Π										1	X Include EDD:	Laboratory Use Only				
Address: 6425 S. Hwy. 191														LOCUS UPLOAD EXCEL	Samples Wore: Fed EX				
Blanding, UT 84511														Field Filtered For:	Snipped a)hand gellwered				
Contact Garrin Palmer			11												2 Arribient of Chilles				
Phone #. (435) 678-2221 Cell														For Compliance With:	3 Temperatum				
gpalmer@energyfuels.com; KWeinel@energ Email: dturk@energyfuels.com	iuels.com;													CWA	4 Received Brokers Leoking				
Project Name: 4th Quarter Chloroform 2014														□ SDWA □ ELAP / A2LA □ NLLAP	(Improperty Senior) Y				
Project #:				(2)	0.0)									Non-Compliance Other:	5 Accerty Preserved				
PO#:			ers	ix (353.2)		(8260C)									Chinad al borich				
Sampler Name: Tanner Holliday			Containers	Matrix NO3 (500 0	(826								Known Hazards	6 Received William				
Sample ID:	Date Sampled	Time Sampled	# of Cc	Sample Matri NO2/NO3	CI (4500 (VOCs								& Sample Comments	O Tree N				
W4-13_10232014	10/23/14	740	5	w x	x	x				-									
W4-14_10232014	10/23/14	746	5	w x	x	x				_					COC Tape Was				
W4-36_10232014	10/23/14	755	5	wx	x	x									1 Brosefit on Outer Package N NA				
W4-27_10232014	10/23/14	802	5	w x	x	×				_			_		2 Sharpen on Outer Package				
W4-30_10232014	10/23/14	808	5	wx	x	x				_					O N NA				
W4-65_10232014	10/23/14	719	5	w x		-				_					Y N NA				
W4-60_10232014	10/23/14	830	5	w x	x	-	-		_	_			_		4 thebrokan on Sample				
rip Blank	10/21/14		3	w	-	x			_				-						
emp Blank			1	w	-	-	-			_			-		Disompancies Between Sample				
			\square		-	_	-		-	-					Y (0)				
	_		\square		-	+			+	_		_	-						
			\vdash	_		-	-	+		_			-		· 하는 곳에서 아이는 것입				
inquished by:	Toster	Received by:						1	-	ate:					· · · · · · · · · · · · · · · · · · ·				
inature Com Jacon	Date 10/23/14	Signature							_	me:				Special Instructions:					
Indisted by:	1700 Dala:	Print Name: Reported by:			-					ite.		_	_	See the Analytical Scope of W	ork for Reporting Limits and VOC				
induisieu 59. Inaturo	Time:	Signature	-	_				-		me:				analyte list,					
nt Name:	Date:	Print Name: Received by:	_	_	_			_		ete:									
nature	Time:	Signature				_				me:			_	-					
nt Name:	Date:	Print Name: Received by:	1		. 0	V	2		- 0		1-	d.	-						
gnature	Time:	Signature A	Je	444	10	F	zu	w	T	ater 10	2/24	-	_						
rint Name:		Print Namo:	Xe	ni	Se	E	>r	un	5	1.1	4:	50							

.

Preservation Check Sheet

												L	ab Samp	le Set #:	14	1353
	-001	-002	-003	-004	-005	-006	-007	-008	-009	-010	-011	-012	-013	-014	-015	-016
IO ₂ /NO ₃ : pH <2 H ₂ SO ₄	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
	Vances of add		In the second	la la constata de	- Control Cont	No for the second	Contract Contra	A CONTRACTOR		Letters Science	D.T. Y.S. Merry M.	Personal and the	Contractory 1	0.0005100		
	-017	-018	-019	-020	法管理的			100000	Contraction of	與目的設	教授也是	周期后		同时的经		
IO ₂ /NO ₃ : pH <2 H ₂ SO ₄	YES	YES	YES	YES						1						
	1.5.4			A												
	加速時間	And the second	loquizza -	的复数数学	1750 cg (194)	11100000	Samue 21	1-176-83	2-12 V-1	1-00411217	美市港北市	Net Plant	The state	计记录数件	1000	(11)
	10000000	日本なる	Letter services a	0.489466666	<u>1992/193 (1911)</u>	Hilling (44) Aug	officers States	CONTRACTOR OF STREET	Service of	医测力剂 利力剂	Set a Marcan	HEARD MILLER		植民族政策	010/11/11/20	102 St. 11
	L		l	I				I								
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	間治療		建設		(G. 71)			THE SE	SHE	Marine State				
								1					C-CHARTER			-L+CATURCA!
								N								
		语词 图4				的名称名称	和許有	13-11-23		神影神社		與目標論	ह निरत्वत्राध्य	前線早	1. Starting	自動的
			Si										_			
	NAMES OF A DESCRIPTION OF A DESCRIPTIONO		The has reported on			CR LINES TA CAMP	Annual sector	Ferningson	-	Consection and	Imposed	Interview and	Line of the line	12 to your selection	Decision (Second	Million Contracts
	和操作	CONTROL OF		·····································		同的过度		1937年1月	all we		然限。福			同的法言	間均均均易	刻峰。唐

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511 TEL: (435) 678-2221

	RE: 4th Quarter Chloroform 2014	
3440 South 700 West	Dear Garrin Palmer:	Lab Set ID: 1410466
Salt Lake City, UT 84119	American West Analytical Laboratories received 23 sam analyses presented in the following report.	ple(s) on 10/31/2014 for the
Phone: (801) 263-8686	American West Analytical Laboratories (AWAL) is accu	
Toll Free: (888) 263-8686	Environmental Laboratory Accreditation Program (NEL state accredited in Colorado, Idaho, New Mexico, and M	· ·
Fax: (801) 263-8687		
e-mail: awal@awal-labs.com	All analyses were performed in accordance to the NELA	*
web: www.awal-labs.com	otherwise. Accreditation scope documents are available questions or concerns regarding this report please feel fr	
Kyle F. Gross	The abbreviation "Surr" found in organic reports indicate intentionally added by the laboratory to determine sample purging afficiency. The "Penerting Limit" found on the	e injection, extraction, and/or
Laboratory Director	purging efficiency. The "Reporting Limit" found on the practical quantitation limit (PQL). This is the minimum	
Jose Rocha	reported by the method referenced and the sample matrix confused with any regulatory limit. Analytical results ar	x. The reporting limit must not be
QA Officer	figures for quality control and calculation purposes.	

Thank You,

Approved by:

SAMPLE SUMMARY

Client: Project: Lab Set ID: Date Received: Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 1410466 10/31/2014 950h Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
3440 South 700 West	1410466-001A	TW4-31_10282014	10/28/2014 808h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1410466-001B	TW4-31_10282014	10/28/2014 808h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-001C	TW4-31_10282014	10/28/2014 808h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1410466-002A	TW4-34_10282014	10/28/2014 815h	Aqueous	Anions, E300.0
	1410466-002B	TW4-34_10282014	10/28/2014 815h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1410466-002C	TW4-34_10282014	10/28/2014 815h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1410466-003A	TW4-35_10282014	10/28/2014 822h	Aqueous	Anions, E300.0
	1410466-003B	TW4-35_10282014	10/28/2014 822h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1410466-003C	TW4-35_10282014	10/28/2014 822h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-004A	TW4-23_10282014	10/28/2014 830h	Aqueous	Anions, E300.0
Kyle F. Gross	1410466-004B	TW4-23_10282014	10/28/2014 830h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1410466-004C	TW4-23_10282014	10/28/2014 830h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-005A	MW-32_10292014	10/29/2014 1320h	Aqueous	Anions, E300.0
Jose Rocha	1410466-005B	MW-32_10292014	10/29/2014 1320h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1410466-005C	MW-32_10292014	10/29/2014 1320h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-006A	TW4-26_10282014	10/28/2014 836h	Aqueous	Anions, E300.0
	1410466-006B	TW4-26_10282014	10/28/2014 836h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-006C	TW4-26_10282014	10/28/2014 836h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-007A	TW4-05_10282014	10/28/2014 845h	Aqueous	Anions, E300.0
	1410466-007B	TW4-05_10282014	10/28/2014 845h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-007C	TW4-05_10282014	10/28/2014 845h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-008A	TW4-18_10282014	10/28/2014 857h	Aqueous	Anions, E300.0
	1410466-008B	TW4-18_10282014	10/28/2014 857h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-008C	TW4-18_10282014	10/28/2014 857h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-009A	TW4-09_10292014	10/29/2014 748h	Aqueous	Anions, E300.0
	1410466- <mark>009</mark> B	TW4-09_10292014	10/29/2014 748h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-009C	TW4-09_10292014	10/29/2014 748h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-010A	TW4-33_10292014	10/29/2014 757h	Aqueous	Anions, E300.0
	1410466-010B	TW4-33_10292014	10/29/2014 757h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 11/12/2014 Page 2 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:

Project:

Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 Lab Set ID: 1410466 Date Received: 10/31/2014 950h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
2440 5 4 700 34 4	1410466-010C	TW4-33_10292014	10/29/2014 757h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West	1410466-011A	TW4-08_10292014	10/29/2014 804h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1410466-011B	TW4-08_10292014	10/29/2014 804h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-011C	TW4-08_10292014	10/29/2014 804h	Aqueous	VOA by GC/MS Method 8260C/5030C
Dhamay (901) 2(2,9(9)	1410466-012A	TW4-21_10292014	10/29/2014 813h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1410466-012B	TW4-21_10292014	10/29/2014 813h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1410466-012C	TW4-21_10292014	10/29/2014 813h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1410466-013A	TW4-29_10292014	10/29/2014 824h	Aqueous	Anions, E300.0
	1410466-013B	TW4-29_10292014	10/29/2014 824h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1410466-013C	TW4-29_10292014	10/29/2014 824h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-014A	TW4-06_10292014	10/29/2014 833h	Aqueous	Anions, E300.0
Kyle F. Gross	1410466-014B	TW4-06_10292014	10/29/2014 833h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1410466-014C	TW4-06_10292014	10/29/2014 833h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-015A	TW4-16_10292014	10/29/2014 840h	Aqueous	Anions, E300.0
Jose Rocha	1410466-015B	TW4-16_10292014	10/29/2014 840h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1410466-015C	TW4-16_10292014	10/29/2014 840h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-016A	TW4-11_10292014	10/29/2014 907h	Aqueous	Anions, E300.0
	1410466-016B	TW4-11_10292014	10/29/2014 907h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-016C	TW4-11_10292014	10/29/2014 907h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-017A	TW4-01_10292014	10/29/2014 913h	Aqueous	Anions, E300.0
	1410466-017B	TW4-01_10292014	10/29/2014 913h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-017C	TW4-01_10292014	10/29/2014 913h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-018A	TW4-07_10302014	10/30/2014 654h	Aqueous	Anions, E300.0
	1410466-018B	TW4-07_10302014	10/30/2014 654h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-018C	TW4-07_10302014	10/30/2014 654h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-019A	TW4-10_10302014	10/30/2014 703h	Aqueous	Anions, E300.0
	1410466-019B	TW4-10_10302014	10/30/2014 703h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-019C	TW4-10_10302014	10/30/2014 703h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1410466-020A	TW4-02_10302014	10/30/2014 712h	Aqueous	Anions, E300.0
	1410466-020B	TW4-02_10302014	10/30/2014 712h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 11/12/2014 Page 3 of 62 All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:

Project: Lab Set ID:

Energy Fuels Resources, Inc. 4th Quarter Chloroform 2014 1410466 **Date Received:** 10/31/2014 950h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Collected	Matrix	Analysis
2440 5	1410466-020C	TW4-02_10302014	10/30/2014 712h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West	1410466-021A	TW4-70_10282014	10/28/2014 845h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1410466-021B	TW4-70_10282014	10/28/2014 845h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1410466-021C	TW4-70_10282014	10/28/2014 845h	Aqueous	VOA by GC/MS Method 8260C/5030C
Dhame: (201) 262 2626	1410466-022A	TW4-09R-10282014	10/28/2014 916h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1410466-022B	TW4-09R-10282014	10/28/2014 916h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1410466-022C	TW4-09R-10282014	10/28/2014 916h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1410466-023A	Trip Blank	10/28/2014	Aqueous	VOA by GC/MS Method 8260C/5030C

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All multiples applicable to the CWA, SDWA, and RCRA ore performed in accordance to NELAC protocols. Perturnent sampling information is located on the attached COC. Confidential Business Information. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for this addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the tade and of science.

Inorganic Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 4th Quarter Chloroform 2014 1410466
3440 South 700 West	Sample Receipt Information:	
Salt Lake City, UT 84119 Phone: (801) 263-8686	Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies:	10/31/2014 10/28-10/30/2014 Intact None
Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com		ments: The analysis and preparation for the d holding times. The samples were properly
web: www.awal-labs.com	Preparation and Analysis Requirements methods stated on the analytical reports.	: The samples were analyzed following the
	Analytical QC Requirements: All in requirements were met. All internal standard	nstrument calibration and calibration check recoveries met method criterion.
Kyle F. Gross Laboratory Director	Batch QC Requirements: MB, LCS, MS, I	MSD, RPD:
Jose Rocha	Method Blanks (MB): No target indicating that the procedure was fre	analytes were detected above reporting limits, e from contamination.
QA Officer	Laboratory Control Samples (LC limits, indicating that the preparation	CS): All LCS recoveries were within control and analysis were in control.
		licates (MS/MSD): All percent recoveries and tes) were inside established limits, with the

Sample ID	Analyte	QC	Explanation
1410466-011B	Nitrate-Nitrite (as N)	MS/MSD	Sample matrix interference
1410466-021B	Nitrate-Nitrite (as N)	MS/MSD	Sample matrix interference

Corrective Action: None required.

Report Date: 11/12/2014 Page 5 of 62 All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the atlached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in coancection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science

Volatile Case Narrative

American West	Client: Contact: Project: Lab Set ID:	Energy Fuels Resources, Inc. Garrin Palmer 4th Quarter Chloroform 2014 1410466
3440 South 700 West	Sample Receipt Information:	
Salt Lake City, UT 84119	Date of Receipt: Date(s) of Collection: Sample Condition: C-O-C Discrepancies:	10/31/2014 10/28-10/30/2014 Intact None
Phone: (801) 263-8686	Method:	SW-846 8260C/5030C
Toll Free: (888) 263-8686	Analysis:	Volatile Organic Compounds
Fax: (801) 263-8687		
e-mail: awal@awal-labs.com	General Set Comments: Multiple tar	get analytes were observed above reporting limits.
web: www.awal-labs.com	containers and properly preserved.	uirements: All samples were received in appropriate The analysis and preparation of all samples were times following the methods stated on the analytical
Kyle F. Gross Laboratory Director		All instrument calibration and calibration check and ard recoveries met method criterion.
Jose Rocha	Batch QC Requirements: MB, LCS,	MS, MSD, RPD, and Surrogates:
QA Officer	Method Blanks (MBs): No indicating that the procedure w	target analytes were detected above reporting limits, vas free from contamination.
		ple / Laboratory Control Sample Duplicate nd LCSD recoveries were within control limits, and analysis were in control.
	RPDs (Relative Percent Dif following exception: the MS a	Duplicates (MS/MSD): All percent recoveries and ferences) were inside established limits, with the nd MSD percent recoveries for chloroform on sample f the control limits due to high analyte concentration.
	Surrogates: All surrogate rec	overies were within established limits.

Corrective Action: None required.

Report Date: 11/12/2014 Page 6 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols Pertinent sampling information is located on the attached COC Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process. or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trude and of science.

Chloride

Test Code:

Test Code:

Test Code:

Test Code:

Lab Sample ID: LCS-R72610

Lab Sample ID: LCS-R72611

Lab Sample ID: LCS-R72685

Lab Sample ID: LCS-R72901

Nitrate/Nitrite (as N)

Nitrate/Nitrite (as N)

Nitrate/Nitrite (as N)

Nitrate/Nitrite (as N)

NO2/NO3-W-353.2

NO2/NO3-W-353.2

NO2/NO3-W-353.2

NO2/NO3-W-353.2

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: E	Energy Fuels Resour	ces, Inc.					Contact:	Garrin Pa	lmer					
Lab Set ID: 1	410466						Dept:	WC						
Project: 4	th Quarter Chlorofo	rm 2014					QC Type	: LCS						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R72713 300.0-W	Date Analyzed:	11/04/20	14 1241h										
Chloride		4.96	mg/L	E300.0	0.00751	0.100	5.000	0	99.2	90 - 110				
Lab Sample ID: Test Code:	LCS-R72715 300.0-W	Date Analyzed:	11/05/20	14 1535h										

0.100

0.0100

0.0100

0.0100

0.0100

5.000

1.000

1.000

1.000

1.000

0

0

0

0

0

103

97.8

95.8

104

106

90 - 110

90 - 110

90 - 110

90 - 110

90 - 110

0.00751

0.00833

0.00833

0.00833

0.00833

E300.0

E353.2

E353.2

E353.2

E353.2

5.14

0.978

0.958

1.04

1.06

Date Analyzed:

Date Analyzed:

Date Analyzed:

mg/L

mg/L

mg/L

mg/L

mg/L

Date Analyzed: 11/03/2014 1249h

11/03/2014 1154h

11/04/2014 1506h

11/11/2014 1126h

Report Date: 11/12/2014 Page 52 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tade and of science.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

RPD

Jose Rocha QA Officer

Analizto	Docult	Unite	Mathod	MDI	Reporting	Amount	Spike Ref.	% DEC	Limite	RPD Ref.
Project:	4th Quarter Chloroform 2014					QC Type	: MBLK			
Lab Set ID	: 1410466					Dept:	WC			
Client:	Energy Fuels Resources, Inc.					Contact:	Garrin Pa	lmer		

Analyte		Result	Units	Method	MDL	Limit	Spiked	Amount	%REC	Limits	Amt	% RPD	Limit	Qual
Lab Sample ID: Test Code:	MB-R72713 300.0-W	Date Analyzed:	11/04/201	4 1224h										
Chloride		< 0.100	mg/L	E300.0	0.00751	0.100								
Lab Sample ID: Test Code:	MB-R72715 300.0-W	Date Analyzed:	11/05/201	4 1519h										
Chloride		< 0.100	mg/L	E300.0	0.00751	0.100								_
Lab Sample ID: Test Code:	MB-R72610 NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1153h										
Nitrate/Nitrite (as	s N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								
Lab Sample ID: Test Code:	MB-R72611 NO2/NO3-W-353.2	Date Analyzed:	11/03/201	4 1248h										
Nitrate/Nitrite (as	5 N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								
Lab Sample ID: Test Code:	MB-R72685 NO2/NO3-W-353.2	Date Analyzed:	11/04/201	4 1504h										
Nitrate/Nitrite (as	s N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								
Lab Sample ID: Test Code:	MB-R72901 NO2/NO3 - W-353.2	Date Analyzed:	11/11/201	4 1123h										
Nitrate/Nitrite (as	s N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								

Report Date: 11/12/2014 Page 53 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Qual

1

Jose Rocha QA Officer

Client:	Energy Fuels Resource	es, Inc.					Contact	: Garrin Pa	lmer				
Lab Set ID:	1410466						Dept:	WC					
Project:	4th Quarter Chloroform	n 2014					QC Typ	e: MS					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit
Lab Sample II Test Code:	D: 1410466-012AMS 300.0-W	Date Analyzed:	11/04/20	14 1315h									
Chloride		756	mg/L	E300.0	0.751	10.0	500.0	252	101	90 - 110			
Lab Sample II Test Code:	D: 1410466-001AMS 300.0-W	Date Analyzed:	11/04/20	14 1456h									
Chloride		79.8	mg/L	E300.0	0.0751	1.00	50.00	30	99.5	90 - 110			

 Lab Sample ID:
 1410466-011AMS
 Date Analyzed:
 11/04/2014 1852h

 Test Code:
 300.0-W
 300.0-W
 300.0-W

 Chloride
 95.6
 mg/L
 E3

 Lab Sample ID:
 1410466-022AMS
 Date Analyzed:
 11/06/2014 018h

Test Code: 300.0-W

E300.0 0.00751 0.100 5.000 0 102 90 - 110 Chloride 5.08 mg/L Lab Sample ID: 1410466-001BMS 11/03/2014 1216h Date Analyzed: Test Code: NO2/NO3-W-353.2 Nitrate/Nitrite (as N) 11.1 mg/L E353.2 0.0833 0.100 10.00 1.23 98.4 90 - 110 11/03/2014 1225h Lab Sample ID: 1410466-011BMS Date Analyzed: Test Code: NO2/NO3-W-353.2 E353.2 0.00833 0.0100 1.000 0.914 83.6 90 - 110 Nitrate/Nitrite (as N) 1.75 mg/L

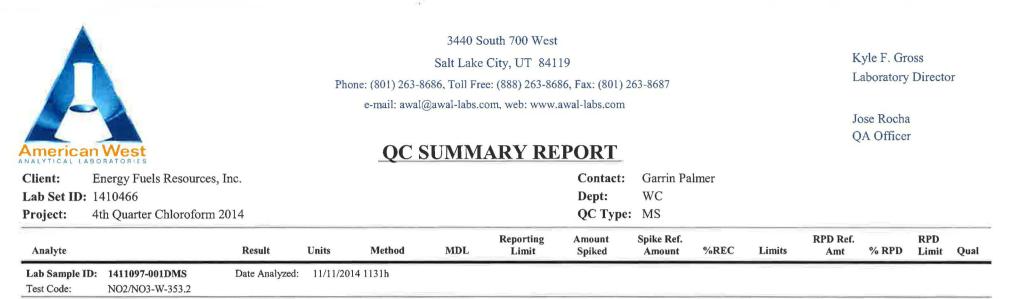
0.0751

E300.0

11/03/2014 1303h Lab Sample ID: 1410466-021BMS Date Analyzed: NO2/NO3-W-353.2 Test Code: E353.2 0.0833 0.100 10.00 8.64 81.6 90 - 110 1 Nitrate/Nitrite (as N) 16.8 mg/L Lab Sample ID: 1410205-006CMS Date Analyzed: 11/04/2014 1526h Test Code: NO2/NO3-W-353.2 E353.2 0.833 105 Nitrate/Nitrite (as N) 151 mg/L 1.00 100.0 46.3 90 - 110

1.00

50.00


46.7

97.9

90 - 110

Report Date: 11/12/2014 Page 54 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Nitrate/Nitrite (as N) 1.03 mg/L E353.2 0.00833 0.0100 1.000 0 103 90 - 110

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the addressee, privileges of subsequent use of the addressee will be granted only on contact. This company or any member of its staff, or reproduction of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Set ID: 1410466

Nitrate/Nitrite (as N)

Lab Sample ID: 1410466-021BMSD

Energy Fuels Resources, Inc.

Client:

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

OC SUMMARY REPORT

Garrin Palmer

WC

Contact:

Dept: -----

Kyle F. Gross Laboratory Director

Jose Rocha OA Officer

Project: 4	th Quarter Chloroform	n 2014					QC Тур	e: MSD						
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1410466-012AMSD 300.0-W	Date Analyzed:	11/04/20	14 1332h										
Chloride	-	751	mg/L	E300.0	0.751	10.0	500.0	252	99.7	90 - 110	756	0.650	20	
Lab Sample ID: Test Code:	1410466-001AMSD 300.0-W	Date Analyzed:	11/04/20	14 1513h										
Chloride		79.9	mg/L	E300.0	0.0751	1.00	50.00	30	99.8	90 - 110	79.8	0.201	20	
Lab Sample ID: Test Code:	1410466-011AMSD 300.0-W	Date Analyzed:	11/04/20	14 1909h										
Chloride		94.2	mg/L	E300.0	0.0751	1.00	50.00	46.7	95.0	90 - 110	95.6	1.52	20	
Lab Sample ID: Test Code:	1410466-022AMSD 300.0-W	Date Analyzed:	11/06/20	14 035h										
Chloride		5.08	mg/L	E300.0	0.00751	0.100	5.000	0	102	90 - 110	5.08	0.115	20	
Lab Sample ID: Test Code:	1410466-001BMSD NO2/NO3-W-353.2	Date Analyzed:	11/03/20	14 1222h										
Nitrate/Nitrite (a	us N)	11.2	mg/L	E353.2	0.0833	0.100	10.00	1.23	99.8	90 - 110	11.1	1.26	10	
Lab Sample ID: Test Code:	1410466-011BMSD NO2/NO3-W-353.2	Date Analyzed:	11/03/20	14 1226h										

Test Code: NO2/NO3-W-353.2 Nitrate/Nitrite (as N) 16.6 E353.2 0.0833 0.100 10.00 8.64 79.5 90 - 110 16.8 1.26 10 mg/L Lab Sample ID: 1410205-006CMSD Date Analyzed: 11/04/2014 1527h Test Code: NO2/NO3-W-353.2 Nitrate/Nitrite (as N) 146 mg/L E353.2 0.833 1.00 100.0 46.3 100 90 - 110 151 3.10 10

0.0100

1.000

0.914

86.9

90 - 110

1.75

0.00833

E353.2

1.78

Date Analyzed:

mg/L

11/03/2014 1305h

Report Date: 11/12/2014 Page 56 of 62

1.87

10

1

£.

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Lab Set ID:	Energy Fuels Resources 1410466 4th Quarter Chloroform						Contact: Dept: QC Type	Garrin Pa WC : MSD	lmer					
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID Test Code:	: 1411097-001DMSD NO2/NO3-W-353.2	Date Analyzed:	11/11/20	14 1132h										
Nitrate/Nitrite (as N)	1.04	mg/L	E353.2	0.00833	0.0100	1.000	0	104	90 - 110	1.03	0.965	10	

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report is provided only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Report Date: 11/12/2014 Page 57 of 62

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

NALYTICAL LABORATORIES			YC L		ANINE	IUNI							
Client: Energy Fuels Resources,	Inc.					Contact:	Garrin Pa	ılmer					
Lab Set ID: 1410466						Dept:	MSVOA						
Project: 4th Quarter Chloroform	2014					QC Type:	LCS						
Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-3 110414ATest Code:8260-W	Date Analyzed:	11/04/20	14 725h										
Chloroform	20.4	µg/L	SW8260C	0.153	2.00	20.00	0	102	67 - 132				
Methylene chloride	18.5	μg/L	SW8260C	0.172	2.00	20.00	0	92.6	32 - 185				
Surr: 1,2-Dichloroethane-d4	50.8	μg/L	SW8260C			50.00		102	76 - 138				
Surr: 4-Bromofluorobenzene	50.5	μg/L	SW8260C			50.00		101	77 - 121				
Surr: Dibromofluoromethane	50.1	μg/L	SW8260C			50.00		100	67 - 128				
Surr: Toluene-d8	49.3	μg/L	SW8260C			50.00		98.6	81 - 135				
Lab Sample ID: LCS VOC-3 110414B Test Code: 8260-W	Date Analyzed:	11/04/20	14 1827h										
		17	011/02/05	0.150		20.00		101	(5. 100				
Chloroform	20.2	μg/L	SW8260C	0.153	2.00	20.00	0	101	67 - 132				
Methylene chloride	18.0	µg/L	SW8260C	0.172	2.00	20.00	0	90.3	32 - 185				
Surr: 1,2-Dichloroethane-d4	52.3	μg/L	SW8260C			50.00		105	76 - 138				
Surr: 4-Bromofluorobenzene	51.2	μg/L ~	SW8260C			50.00		102	77 - 121				
Surr: Dibromofluoromethane	50.9	μg/L	SW8260C			50.00		102	67 - 128				
Surr: Toluene-d8	51.0	μg/L	SW8260C			50.00		102	81 - 135				
Lab Sample ID:LCS VOC-3 110514ATest Code:8260-W	Date Analyzed:	11/05/20	14 721h										
Chloroform	21.0	μg/L	SW8260C	0.153	2.00	20.00	0	105	67 - 132				
Methylene chloride	17.6	μg/L	SW8260C	0.172	2.00	20.00	0	87.9	32 - 185				
Surr: 1,2-Dichloroethane-d4	54.8	µg/L	SW8260C			50.00		110	76 - 138				
Surr: 4-Bromofluorobenzene	51.5	μg/L	SW8260C			50.00		103	77 - 121				
Surr: Dibromofluoromethane	52.0	μg/L	SW8260C			50.00		104	67 - 128				
Surr: Toluene-d8	51.2	μg/L	SW8260C			50.00		102	81 - 135				

Report Date: 11/12/2014 Page 58 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the tade and of science.

Methylene chloride

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: Energy Fuels Resources	s, Inc.					Contact:	Garrin Pa						
Lab Set ID: 1410466						Dept:	MSVOA						
Project: 4th Quarter Chloroform	2014					QC Type:	MBLK						
Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-3 110414ATest Code:8260-W	Date Analyzed:	11/04/20	14 804h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.504	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.153	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.163	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.172	1.00								
Surr: 1,2-Dichloroethane-d4	51.3	μg/L	SW8260C			50.00		103	76 - 138				
Sun: 4-Bromofluorobenzene	51.0	μg/L	SW8260C			50.00		102	77 - 121				
Surr: Dibromofluoromethane	49.4	μg/L	SW8260C			50.00		98.9	67 - 128				
Surr: Toluene-d8	48.4	µg/L	SW8260C			50.00		96.8	81 - 135				
Lab Sample ID:MB VOC-3 110414BTest Code:8260-W	Date Analyzed:	11/04/20	14 1906h										
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.504	1.00								
Chloroform	< 1.00	μg/L μg/L	SW8260C	0.153	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.163	1.00								
Methylene chloride	< 1.00	μg/L	SW8260C	0.172	1.00								
Surr: 1,2-Dichloroethane-d4	53.9	μg/L	SW8260C			50.00		108	76 - 138				
Surt: 4-Bromofluorobenzene	53.0	μg/L	SW8260C			50.00		106	77 - 121				
Surr: Dibromofluoromethane	52.1	μg/L	SW8260C			50.00		104	67 - 128				
Surr: Toluene-d8	51.6	μg/L	SW8260C			50.00		103	81 - 135				
Lab Sample ID: MB VOC-3 110514A	Date Analyzed:	11/05/20	14 759h										
Test Code: 8260-W													
Carbon tetrachloride	< 1.00	μg/L	SW8260C	0.504	1.00								
Chloroform	< 1.00	μg/L	SW8260C	0.153	1.00								
Chloromethane	< 1.00	μg/L	SW8260C	0.163	1.00								
1 1 1 1 1	. 1 00	17	011/02/02	0.150	1.00								

Surr: 1,2-Dichloroethane-d4 55.8 μg/L SW8260C 50.00 112 76 - 138 Surr: 4-Bromofluorobenzene 53.2 μg/L SW8260C 50.00 106 77 - 121

0.172

SW8260C

< 1.00

μg/L

Report Date: 11/12/2014 Page 59 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC, Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the and or state of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

1.00

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

ANALYTICAL LAB	JHATORIES															
Client: E	Inergy Fuels Resources	, Inc.					Contact:	Garrin Pa	lmer							
Lab Set ID: 1	410466						Dept: MSVOA									
Project: 4th Quarter Chloroform 2014								QC Type: MBLK								
Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual		
Lab Sample ID: Test Code:	MB VOC-3 110514A 8260-W	Date Analyzed:	11/05/20	14 759h												
Surr: Dibrom	ofluoromethane	52.7	μg/L	SW8260C			50.00		105	67 - 128						
Surr: Toluene	-d8	51.4	μg/L	SW8260C			50.00		103	81 - 135						

Report Date: 11/12/2014 Page 60 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good fuith and according to the rules of the trade and of science.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:Energy Fuels ResourcesLab Set ID:1410466Project:4th Quarter Chloroform						Contact: Dept: QC Type:	Garrin Pa MSVOA : MS	lmer					
Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1410466-002CMS Test Code: 8260-W	Date Analyzed:	11/04/20	14 1216h										
Chloroform	20.2	μg/L	SW8260C	0.153	2.00	20.00	0	101	50 - 146				
Methylene chloride	18.3	μg/L	SW8260C	0.172	2.00	20.00	0	91.6	30 - 192				
Surr: 1,2-Dichloroethane-d4	51.6	μg/L	SW8260C			50.00		103	72 - 151				
Surr: 4-Bromofluorobenzene	50.1	μg/L	SW8260C			50.00		100	80 - 128				
Surr: Dibromofluoromethane	51.2	μg/L	SW8260C			50.00		102	80 - 124				
Surr: Toluene-d8	51.0	µg/L	SW8260C			50.00		102	77 - 129				
Lab Sample ID: 1410466-011CMS Test Code: 8260-W	Date Analyzed:	11/04/20	14 1944h										
Chloroform	225	μg/L	SW8260C	0.153	2.00	20.00	191	175	50 - 146				2
Methylene chloride	18.9	μg/L	SW8260C	0.172	2.00	20.00	0	94.4	30 - 192				
Surr: 1,2-Dichloroethane-d4	53.1	μg/L	SW8260C			50.00		106	72 - 151				
Surr: 4-Bromofluorobenzene	51.3	μg/L	SW8260C			50.00		103	80 - 128				
Surr: Dibromofluoromethane	51.9	μg/L	SW8260C			50.00		104	80 - 124				
Surr: Toluene-d8	50.4	µg/L	SW8260C			50.00		101	77 - 129				
Lab Sample ID: 1410466-012CMS Test Code: 8260-W	Date Analyzed:	11/05/20	14 936h										1.
Chloroform	425	μg/L	SW8260C	1.53	20.0	200.0	229	98.4	50 - 146				
Methylene chloride	177	μg/L	SW8260C	1.72	20.0	200.0	0	88.4	30 - 192				
Surr: 1,2-Dichloroethane-d4	567	μg/L	SW8260C			500.0		113	72 - 151				
Surr: 4-Bromofluorobenzene	539	μg/L	SW8260C			500.0		108	80 - 128				
Surr: Dibromofluoromethane	534	μg/L	SW8260C			500.0		107	80 - 124				
Surr: Toluene-d8	520	μg/L	SW8260C			500.0		104	77 - 129				

² - Analyte concentration is too high for accurate matrix spike recovery.

Report Date: 11/12/2014 Page 61 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MSD

Dept:

Garrin Palmer MSVOA Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	Energy Fuels Resources, Inc.
Lab Set ID:	1410466
Project:	4th Quarter Chloroform 2014

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1410466-002CMSD Test Code: 8260-W	Date Analyzed:	11/04/20	14 1235h										
Chloroform	21.4	μg/L	SW8260C	0.153	2,00	20.00	0	107	50 - 146	20.2	5.73	25	
Methylene chloride	19.3	μg/L	SW8260C	0.172	2.00	20.00	0	96.3	30 - 192	18.3	5.00	25	
Surr: 1,2-Dichloroethane-d4	52.4	µg/L	SW8260C			50.00		105	72 - 151				
Surr: 4-Bromofluorobenzene	52.1	μg/L	SW8260C			50.00		104	80 - 128				
Surr: Dibromofluoromethane	51.3	μg/L	SW8260C			50.00		103	80 - 124				
Surr: Toluene-d8	50.8	μg/L	SW8260C			50.00		102	77 - 129				
Lab Sample ID: 1410466-011CMSD Test Code: 8260-W	Date Analyzed:	11/04/20	14 2004h										
Chloroform	221	μg/L	SW8260C	0.153	2.00	20.00	191	154	50 - 146	225	1.91	25	2
Methylene chloride	18.8	μg/L	SW8260C	0.172	2,00	20.00	0	93.9	30 - 192	18.9	0.584	25	
Surr: 1,2-Dichloroethane-d4	53.6	μg/L	SW8260C			50.00		107	72 - 151				
Surr: 4-Bromofluorobenzene	51.3	μg/L	SW8260C			50.00		103	80 - 128				
Surr: Dibromofluoromethane	52.0	µg/L	SW8260C			50.00		104	80 - 124				
Surr: Toluene-d8	50.8	μg/L	SW8260C			50.00		102	77 - 129				
Lab Sample ID: 1410466-012CMSD	Date Analyzed:	11/05/20	14 955h										
Test Code: 8260-W													
Chloroform	451	µg/L	SW8260C	1.53	20.0	200.0	229	111	50 - 146	425	5.89	25	
Methylene chloride	183	μg/L	SW8260C	1.72	20.0	200.0	0	91.3	30 - 192	177	3.23	25	
Surr: 1,2-Dichloroethane-d4	570	µg/L	SW8260C			500.0		114	72 - 151				
Surr: 4-Bromofluorobenzene	528	μg/L	SW8260C			500.0		106	80 - 128				
Surr: Dibromofluoromethane	542	μg/L	SW8260C			500.0		108	80 - 124				
Surr: Toluene-d8	524	μg/L	SW8260C			500.0		105	77 - 129				

² - Analyte concentration is too high for accurate matrix spike recovery.

Report Date: 11/12/2014 Page 62 of 62

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols, Pertinent sampling information is located on the attached COC₄ Confidential Business Information: This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

WORK O	RDER Summary				Work Orde	r: 1410466	Page 1 of 4
Client:	Energy Fuels Resources, Inc.					te: 11/11/2014	2
Client ID:	DEN100		Contact:	Garrin Palmer			
Project:	4th Quarter Chloroform 2014		QC Leve		WOT	pe: Project	
-		to success DI of 1 m					
Comments:	PA Rush. QC 3 (Summary/No chroma Jenn. J-flag what we can't meet. EIM I				02/NO3. Expected leve	is provided by client	- see
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1410466-001A	TW4-31_10282014	10/28/2014 0808h	10/31/2014 0950h		Aqueous	df - wc	-
1410466 001D				I SEL Analytes: CL		16 2/2	
1410466-001B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-001C				8260-W		VOCFridge	
					n; # of Analytes: 4 / # of Surr:	_	
1410466-002A	TW4-34_10282014	10/28/2014 0815h	10/31/2014 0950h		Aqueous	df - wc	
410466 0000				I SEL Analytes: CL		15	
1410466-002B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-002C				8260-W		VOCFridge	
110100 0020					n; # of Analytes: 4 / # of Surr.		
1410466-003A	TW4-35_10282014	10/28/2014 0822h	10/31/2014 0950h		Aqueous	df - we	
1410466 0020				1 SEL Analytes: CL NO2/NO3-W-353.2		16 - 21 - 2	
410466-003B				1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-003C				8260-W		VOCFridge	
					n; # of Analytes: 4 / # of Surr.		
410466-004A	TW4-23_10282014	10/28/2014 0830h	10/31/2014 0950h		Aqueous	df - wc	
				1 SEL Analytes: CL			
l410466-004B				NO2/NO3-W-353.2		df - no2/no3	
1410466-004C				1 SEL Analytes: NO3NO2N 8260-W		VOCFridge	
					n; # of Analytes: 4 / # of Surr		
1410466-005A	MW-32_10292014	10/29/2014 1320h	10/31/2014 0950h		Aqueous	df - wc	
				1 SEL Analytes: CL			
410466-005B				NO2/NO3-W-353.2		df - no2/no3	
410466-0050				1 SEL Analytes: NO3NO2N		VOCFridge	
1410466-005C				8260-W Test Group: 8260-W-Custon	n; # of Analytes: 4 / # of Surr		
1410466-006A	TW4-26_10282014	10/28/2014 0836h	10/31/2014 0950h		Aqueous	df - wc	
1110700-0001	1 11 7-20 10202017	10/20/2014 00300	10/01/2014 07001	1 SEL Analytes: CL	1 YUUUUU	01 - WC	

WORK O	RDER Summary					Work Order:	1410466	Page 2 of 4
Client:	Energy Fuels Resources, Inc.					Due Date:	11/11/2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix		Sel Storage	
1410466-006B	TW4-26_10282014	10/28/2014 0836h	10/31/2014 0950h	NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N	Aqueous		df - no2/no3	1
1410466-006C		Λ		8260-W Test Group: 8260-W-Custom	; # of Analytes:	4 / # of Surr: 4	VOCFridge	3
1410466-007A	TW4-05_10282014	10/28/2014 0845h	10/31/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous		df - wc	1
1410466-007B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1410466-007C				8260-W Test Group: 8260-W-Custom	; # of Analytes:	4 / # of Surr: 4	VOCFridge	3
1410466-008A	TW4-18_10282014	10/28/2014 0857h	10/31/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	14	df - wc	1
1410466-008B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1410466-008C				8260-W Test Group: 8260-W-Custom	; # of Analytes:	4 / # of Surr: 4	VOCFridge	3
1410466-009A	TW4-09_10292014	10/29/2014 0748h	10/31/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous		df - wc	1
1410466-009B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1410466-009C				8260-W Test Group: 8260-W-Custom	; # of Analytes:	4 / # of Surr: 4	VOCFridge	3
1410466-010A	TW4-33_10292014	10/29/2014 0757h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous		df - wc	,
1410466-010B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1410466-010C				8260-W Test Group: 8260-W-Custom	; # of Analytes:	4 / # of Surr: 4	VOCFridge	3
1410466-011A	TW4-08_1292014	10/29/2014 0804h	10/31/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous		df - wc	1
1410466-011B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1410466-011C				8260-W Test Group: 8260-W-Custom	u: # of Analytes:	4 / # of Surr: 4	VOCFridge	3
1410466-012A	TW4-21_10292014	10/29/2014 0813h	10/31/2014 0950h		Aqueous		df - wc	1
1410466-012B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	

Client:	RDER Summary Energy Fuels Resources, Inc.					1410466 11/11/2014	Page 3 of 4
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1410466-012C	TW4-21_10292014	10/29/2014 0813h	10/31/2014 0950h		Aqueous # of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-013A	TW4-29_10292014	10/29/2014 0824h	10/31/2014 0950h	300.0-W 1 SEL Analytes: CL	Aqueous	df - wc	
1410466-013B	<u>.</u>			NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
1410466-013C				8260-W Test Group: 8260-W-Custom,	# of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-014A	TW4-06_10292014	10/29/2014 0833h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	
1410466-014B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-014C				8260-W Test Group: 8260-W-Custom	: # of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-015A	TW4-16_10292014	10/29/2014 0840h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	2000 - 2000
1410466-015B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
1410466-015C				8260-W	; # of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-016A	TW4-11_10292014	10/29/2014 0907h	10/31/2014 0950h		Aqueous	df - wc	
1410466-016B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-016C		1		8260-W	; # of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-017A	TW4-01_10292014	10/29/2014 0913h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	1
1410466-017B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-017C				8260-W	; # of Analytes: 4 / # of Surr: 4	VOCFridge	4
1410466-018A	TW4-07_10302014	10/30/2014 0654h	10/31/2014 0950h		Aqueous	df - wc	
1410466-018B	-			NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	
1410466-018C				8260-W Test Group: 8260-W-Custom	• # of Analytes: A / # of Surr: A	VOCFridge	

WORK O	RDER Summary				Work Order:	1410466	Page 4 of 4
Client:	Energy Fuels Resources, Inc.				Due Date:	11/11/2014	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1410466-019A	TW4-10_10302014	10/30/2014 0703h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	
1410466-019B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-019C				8260-W Test Group: 8260-W-Custom,	; # of Analytes: 4 / # of Surr: 4	VOCFridge	:
1410466-020A	TW4-02_10302014	10/30/2014 0712h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	
1410466-020B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N		df - no2/no3	24
1410466-020C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-021A	TW4-70_10282014	10/28/2014 0845h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	df - we	
1410466-021B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-021C				8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-022A	TW4-09R-10282014	10/28/2014 0916h	10/31/2014 0950h	300.0-W I SEL Analytes: CL	Aqueous	df - wc	
1410466-022B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		df - no2/no3	
1410466-022C	Performance			8260-W Test Group: 8260-W-Custom	; # of Analytes: 4 / # of Surr: 4	VOCFridge	
1410466-023A	Trip Blank	10/28/2014	10/31/2014 0950h	8260-W Test Group: 8260-W-Custom	Aqueous ; # of Analytes: 4 / # of Surr: 4	VOCFridge	

AMERICAN V ANALYTICAL LABO 463 W. 3600 S. SALT LAKE PHONE # (801) 263-8686 TOLL FR	DRATORIE	5	CHAIN OF CUSTODY ALL ANALYSIS WILL BE CONDUCTED USING NELAP ACCREDITED METHODS AND ALL DATA WILL BE REPORTED USING AW STANDARD ANALYTE LISTS AND REPORTING LIMITS (PQL) UNLESS SPECIFICALLY REQUESTED OTHERWISE ON THIS CHAIN CUSTODY AND/OR ATTACHED DOCUMENTATION. QC LEVEL: TURN AROUND TIME: UNLESS OTHER ARRANGEMENTS F										DATA WILL BE REPORTED USING AWAL'S	AWAL LAB SAMPLE SET # PAGE 1 OF 2		
FAX # (801) 263-8687 EMAIL	awal@awal-la	BS.COM		(QC I	LEVE	BL:			Tu	rn Aj	ROUNI	о Тіме:		UNLESS OTHER ARRANGEMENTS HAVE BEEN MADE, SIGNED REPORTS WILL BE	
WWW.AWAL-LABS	COM				_	3					STA	NDAR	D	_	EMAILED BY 5:00 PM ON THE DAY THE ARE DUE.	"公司"的原始都会通
CLIENT: Energy Fuels Resources, Inc.															X INCLUDE EDD:	LABORATORY USE ONLY
Address: 6425 S. Hwy. 191															LOCUS UPLOAD EXCEL	SAMPLES WERE FOOLS
Blanding, UT 84511					1										FIELD FILTERED FOR:	SHOPPED OR HAND DELIVERED
CONTACT: Garrin Palmer																2 AMBIENT OR CHILED
PHONE #: (435) 678-2221 CELL #:													11		FOR COMPLIANCE WITH:	3 TEMPERATURE ZI3 "C
gpalmer@energyfuels.com; KWeinel@energyfue EMAIL: dturk@energyfuels.com	els.com;														CWA	4 RECEIVED BROKEN/LEAKING
PROJECT NAME: 4TH QUARTER CHLOROFORM 2014															 SDWA ELAP / A2LA 	(IMPROPERLY SUCCED)
PROJECT #:			s		(2)	300.01									NILLAP Non-Compliance	5 PROPERLY PRESERVED
PO #:			ONTAINER	MATRIX	(353.2)	r 30(()						11		OTHER:	CHECKED AT BENCH
SAMPLER NAME: Tanner Holliday			ONT	MA		00 or	(8260C)								KNOWN HAZARDS	Y N 6 Received Witten
	DATE	Тіме	L L	SAMPLE	NO2/NO3	(4500	VOCs (1					Tiondenia Taxes
SAMPLE ID:	SAMPLED	SAMPLED	#	SA	-	ប					_	_	\downarrow		SAMPLE COMMENTS	
W4-31_10282014	10/28/14	808	5	W	х	X	X					_				
W4-34_10282014	10/28/14	815	5	W	х	X	X					_				COC TAPE WAS
W4-35_10282014	10/28/14	822	5	W	x	X	X					_				A DESENT ON OUTER PACKAGE
W4-23_10282014	10/28/14	830	5	W	Х	X	X			_		_				2 OURROKEN ON OUTER PACKA
W-32_10292014	10/29/14	1320	5	W	X	x	X			_		_		_		
W4-26_10282014	10/28/14	836	5	Ŵ	Х	x	x					_		_		3 PRESENT ON SAMPLE
W4-05_10282014	10/28/14	845	5	W	X	X	x				_	_				4 UNBROKEN ON SAMO
W4-18_10282014	10/28/14	857	5	W	х	X	X									Y N (NA
W4-09_10292014	10/29/14	748	5	W	х	X	X									DISCREPANCIES BETWEEN SAMPLE
W4-33_10292014	10/29/14	757	5	W	x	x	x					_				LABELS AND COC RECORD
W4-08_10292014	10/29/14	804	5	W	х	x	x									
W4-21_10292014	10/29/14	813	5	W	х	X	X								+	
W4-29_10292014	10/29/14	824	5	W	х	x	X					-		-		
BNATURE JANDER Holling	10/30/2014	RECEIVED BY:							~	-P.	ATE:				SPECIAL INSTRUCTIONS:	
RUNT NAME TANNER Hallingy	TIME:	PRINT NAME					~	/		π	ME:					
ELNQUIRED BY:	DATE:	RECEIVED BY: SIGNATURE	1.00	-	~					D.	ATE:				See the Analytical Scope of V analyte list.	Work for Reporting Limits and V
RINT NAME	Тіме:	PRINT-NAME:	_							T	IME:	-				
	DATE	RECEIVED BY: SIGNATURE								D.	ATE:					
aint Name	TIME	PRINT NAME		_						Π	IME;		5			
	Date:	RECEIVED BY:	2	2	n.	àc	N	3	en	20	ATE:	0	31	14		
ININT NAME:	TIME:	PRINT NAME:	1	5		21	01	5	un	T	MIL:		1.5			

AMERICAN ANALYTICAL LAR 463 W. 3600 S. Salt Lak	BORATORIE TE CITY, UT 84115							DUCTED U	sing NE orting l	LAP AG	CREDIT	ID METHO	CIFICALLY R	. DATA WILL BE REPORTED USING AWAL'S EQUESTED OTHERWISE ON THIS CHAIN OP	AWAL LAB SAMPLE SET # PAGE 2 OF 2
PHONE # (801) 253-8686 TOLL FAX # (801) 263-8687 EMA	IL AWAL@AWAL-LAB		-	-	001	LEVE	L:		-					UNLESS OTHER ARRANGEMENTS HAVE	DUE DATE:
WWW.AWAL-LA						3	-				TAND			BIEN MADE, LIONED REPORTS WILL BE EMAILED BY 5:00 PM ON THE DAY THE	
				-	-	_			T				TT	ARE DUE,	
CLIENT: Energy Fuels Resources, Inc.								1						X INCLUDE EDD: LOCUS UPLOAD	LABORATORY USE ONLY
Address: 6425 S. Hwy. 191														EXCEL FIELD FILTERED FOR:	SAMPLES WERE: Fed Ex
Blanding, UT 84511															1 SHIPPED OR HAND DILLIVERED
CONTACT: Garrin Palmer														FOR COMPLIANCE WITH:	2 AMBIENT OR CHILLED
PHONE #: (435) 678-2221 CELL gpalmer@energyfuels.com; KWeinel@energy							p -							NELAP RCRA	3 TEMPERATURE 2.3 "C
EMAIL: dturk@energyfuels.com														CWA SDWA	4. RECEIVED BROKEN/LEAKING (IMPROPERLY SEACED)
PROJECT NAME: 4TH QUARTER CHLOROFORM 20	14					~								ELAP / A2LA	
Ргојест #:			ERS	×	3.2)	300.0)								Non-Compliance OTHER:	5 PROPERLY PRESERVED
PO #:			TAIN	MATRIX	(353.	or 3	(8260C)								CHECKED AT BENCH
Sampler Name: Tanner Holliday			U U U	N N	NO2/NO3	(4500 ar	(82							KNOWN HAZARDS	6 RECEIVED WITHIN
SAMPLE ID:	DATE SAMPLED	TIME SAMPLED	ЧÖ	SAMPLE	02/	CI (4	Vocs							& SAMPLE COMMENTS	
TW4-06_10292014	10/29/14	833	+≢ 5	W	X	x	X		+-					SAMPLE COMMENTS	
TW4-16_10292014	10/29/14	840	5	W	х	x	x		-						
TW4-11_10292014	10/29/14	907	5	w	x	x	x								COC TAPE WAS
TW4-01_10292014	10/29/14	913	5	w	x	x	x								2 DININGKEN ON OUTES PACKAGE
TW4-07_10302014	10/30/14	654	5	w	x	х	x								N NA
TW4-10_10302014	10/30/14	703	5	w	х	х	x								3. PRESENT ON SAMPLE
TW4-02_10302014	10/30/14	712	5	w	x	х	x								4 UNBROKEN ON SAMPLE
TW4-70_10282014	10/28/14	845	5	w	x	x	x						1		Y N NA
TW4-09R_10282014	10/28/14	916	5	w	х	х	x								DISCRIPANCIES BETWEEN SAMPLE
TRIP BLANK	10/28/14		3	w			x								LASELS AND COC RECORD?
TEMP BLANK	10/30/14		1	W											
RELANQUISHED BY: JORNEST Hollohn	DATE: 10/30/2014	RECEIVED BY:						4		DATE				SPECIAL INSTRUCTIONS:	
PRINT NAME TANGE Holliday	Тіме: 1100	PRINT NAME				/	/			TIME:					
Relinguished BY:	DATE:	RECEIVED BY:		/	/					DATE				See the Analytical Scope of V analyte list.	Vork for Reporting Limits and VO
PRINT NAME:	Тіме:	PRINT NAME	-							Тіме:				Tanay to use	
RELINQUISHED BY: SIGNATURE		RECEIVED BY:								DATE					
PRINT NAME:	Тиме	PRINT NAME:								TIME:					
RELINGUISHED BY: Signature	DATE:	RECEIVED BY: SIGNATURE	R	0	AA I	10	B	511	~	DATE	10	31	14		
PROST NAME	TIME:	PRINT NAME:	T	e	his	Se	B	run	m	TIME			50		
D18 10	12/14											-			

÷

Preservation Check Sheet

												L	.ab Samp	le Set #:	141	0466
	-001	-002	-003	-004	-005	-006	-007	-008	-009	-010	-011	-012	-013	-014	-015	-016
NO ₂ /NO ₃ : pH <2 H ₂ SO ₄	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
	. There is a start	endra Juana -	-	Tonesce 122	Enter Arc	HERE GOAL	and the second sec	Phasecurety	teacest strategy	Res NETERIZAN	87928 Ch2310		CITE OF SHIELD	Marrison	and the second second	CTC 12 17 7 Ret
	-017	018	-019	-020	-021	-022	们价配积吗	的控制	1931		SPLE B	Torner and a series	, 出致深圳	83211011	增出。	
NO ₂ /NO ₃ : pH <2 H ₂ SO ₄	YES	YES	YES	YES	YES	YES										
P	\$344313	いる	10 Andrews	2921104	Areas -		11. ar\$7.1	245110	动物和油油	-	in the m	-tionshipter		Harris Track	S. Starker of a	
	a series and the series of the	2012/01/09/00	自然的時候會	MANGHAL TINS	1221110-12	the set barrent i	BALL OF DEPART		independent		10.5061149	and the second	四日前和	100411050	Second Second	DES: 1
			1									I	1	1	1	
				感 怒的话			计设计	REHE		新生 的	的前方		in Sau	indula i		法时他
			11.7.7.7.7.7.7		Lingtheterset		Contract March 1	Contraction (March)	Hart Lorenza L	I warm to the	1 - 10 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Latter and white		1	1	
					的認識		「人を知道」				1 142	们相望的				き 道影
												1				
		Notice 244	Esphalence	here - 5 million	And the second second	14401000	1911200	100000000	REPART	12 Margaret	HIGH REAL PROPERTY	Cargentine and	ALLENNE	loss in Line	10000000000	BUILDEAM
	and There are		100868K	12-23	and state of the	일려해설치		10.000	295330002			1 A STARLE				

Tab I

Quality Assurance and Data Validation Tables

I-1: Field QA/QC Evaluation

Location	1x Casing Volume	Volume Pumped	2x Casing Volume	Volume Check	Condu	ictivity	RPD	p	н	RPD	Ter	mp	RPD	Redox I	Potential	RPD	Turi	bidity	RPD
		Continuously							-	1			1						-
MW-4	NA	pumped well				000	N/A		.63	N/A		.20	N/A		08	N/A		3	N/A
TW4-01	27.62	66.00	55	OK	2128	2130	0.09	5.94	5.94	0.00	14.98	14.97	0.07	268	266	0.75	41	42	2.41
TW4-02	33.89	55.00	68	Pumped Dry	3586	3610	0.67	6.49	6.52	0.46	13.70	13.79	0.65		M	NC		M	NC
TW4-03	56.30	88.00	113	Pumped Dry	1667	1659	0.48	6.15	6.17	0.32	14.70	14.70	0.00	N	M	NC	N	M	NC
		Continuously																	
TW4-04	NA	pumped well		-		03	N/A		.69	N/A		.55	N/A		96	N/A		2.1	N/A
TW4-05	36.86	88.00	74	OK	1478	1474	0.27	6.17	6.22	0.81	15.42	15.40	0.13	235	236	0.42	14.8	14.9	0.6
TW4-06	17.89	25.66	36	Pumped Dry	3184	3187	0.09	6.65	6.64	0.15	13.67	13.65	0.15		M	NC		M	NC
TW4-07	33.56	66.00	67	Pumped Dry	1638	1637	0.06	7.04	7.01	0.43	14.87	14.85	0.13		M	NC		IM	NO
TW4-08	38.00	77.00	76	OK	4053	4010	1.07	6.31	6.31	0.00	14.97	14.99	0.13	181	178	1.67	0.6	0.6	0.0
TW4-09	38.10	88.00	76	OK	2389	2389	0.00	6.30	6.30	0.00	14.90	14.90	0.00	341	339	0.59	6.9	7.0	1.4
TW4-10	32.37	47.66	65	Pumped Dry	2454	2503	1.98	6.35	6.31	0.63	13.99	14.04	0.36		M	NC		M	NO
TW4-11	25.99	55.00	52	OK	1720	1721	0.06	6.31	6.30	0.16	14.58	14.59	0.07	244	243	0.41	8.7	8.8	1.1
TW4-12	37.69	88.00	75	OK	1306	1306	0.00	6.62	6.64	0.30	14.91	14.93	0.13	193	194	0.52	16.0	15.0	6.4
TW4-13	35.02	49.50	70	Pumped Dry	1829	1840	0.60	6.83	6.81	0.29	13.45	13.47	0.15		M	NC		IM	N
TW4-14	6.67	8.25	13	Pumped Dry	4681	4697	0.34	6.81	6.79	0.29	13.87	13.90	0.22	N	M	NC	N	IM	N
MW 26	NA	Continuously				24			27	NUA	15	10	NUA	1	20	NUA		5	
MW-26 TW4-16	NA	pumped well	00			26	N/A		.37	N/A		.18	N/A		20	N/A		.5	N/
MW-32	49.62	110.00 78.12	99	OK	3972	3964	0.20	6.23	6.23	0.00	14.90	14.91	0.07	250 102	240	4.08	12.0	12.0	0.0
TW4-18	36.74 47.57	110.00	73 95	OK	3783	3783	0.00	6.17	6.15	0.32	14.62 15.52	14.65	0.20	253	252	0.99	0 29	0	0.0
1 1 4-10	47.37		95	OK	1478	1463	1.02	6.15	6.15	0.00	15.52	15.52	0.00	233	232	0.40	29	29	0.0
TW4-19	NA	Continuously pumped well			20	29	NT/A	6	.44	N/A	15	.94	N/A	1	05	N/A		0	N/.
1 ** 4-17	INA	Continuously		-	29	29	N/A	0.	.44	IN/A	13	.94	IN/A	1	03	IN/A		0	19/
TW4-20	NA	pumped well		-	41	62	N/A	6	.05	N/A	16	.03	N/A	1	42	N/A	2	2.0	N/
TW4-21	35.61	88.00	71	OK	4095	4091	0.10	6.42	6.42	0.00	16.25	16.25	0.00	251	250	0.40	0	0	0.0
1 114-21	55.01	Continuously	/1	UK	4095	4091	0.10	0.42	0.42	0.00	10.23	10.25	0.00	231	2.50	0.40	0		0.0
TW4-22	NA	pumped well		-	50	92	N/A	6	.40	N/A	15	.55	N/A	1.	74	N/A		3	N/.
TW4-23	30.85	77.00	62	OK	3609	3605	0.11	6.05	6.10	0.82	14.37	14.37	0.00	101	100	1.00	12.8	12.5	2.3
111125	50.05	Continuously	02	UK	5007	5005	0.11	0.05	0.10	0.02	14.57	14.57	0.00	101	1 100	1.00	12.0	12.5	
TW4-24	NA	pumped well			80	98	N/A	6	.35	N/A	15	.28	N/A	1	82	N/A	1	.5	N/.
		Continuously			0,	10	LUIL	0.			10								
TW4-25	NA	pumped well		-	26	14	N/A	6.	.35	N/A	15	.95	N/A	2	90	N/A		0	N/.
TW4-26	14.14	18.33	28	Pumped Dry	6295	6299	0.06	4.09	4.07	0.49	13.46	13.50	0.30		M	NC	N	IM	N
TW4-27	10.23	11.00	20	Pumped Dry	5263	5274	0.21	6.54	6.52	0.31	13.92	13.98	0.43		IM	NC		IM	N
TW4-28	44.89	77.00	90	Pumped Dry	1243	1240	0.24	6.66	6.68	0.30	13.65	13.70	0.37		IM	NC		IM	N
TW4-29	13.68	16.50	27	Pumped Dry	4144	4149	0.12	6.68	6.65	0.45	13.95	13.97	0.14		IM	NC		IM	N
TW4-30	10.33	14.66	21	Pumped Dry	4454	4450	0.09	5.25	5.24	0.19	13.90	13.89	0.07		IM	NC		IM	N
TW4-31	15.95	19.25	32	Pumped Dry	4683	4695	0.26	6.53	6.52	0.15	15.05	15.03	0.13		IM	NC		IM	N
TW4-32	42.54	88.00	85	OK	7760	7786	0.33	3.38	3.36	0.59	14.79	14.77	0.14	399	399	0.00	7.9	7.9	0.0
TW4-33	10.97	11.00	22	Pumped Dry	4297	4308	0.26	6.69	6.68	0.15	14.54	14.60	0.41		IM	NC		IM	N
TW4-34	17.59	27.50	35	Pumped Dry	3860	3863	0.08	6.61	6.61	0.00	13.71	13.76	0.36	N	IM	NC	-	IM	N
TW4-35	8.75	1.00	18	Pumped Dry	4292	4297	0.12	6.28	6.24	0.64	13.84	13.87	0.22	N	IM	NC	N	IM	N
TW4-36	27.26	33.00	55	Pumped Dry	2413	2430	0.70	6.55	6.52	0.46	13.53	13.59	0.44		IM	NC		IM	N

MW-4, TW4-4, MW-26, TW4-19, TW4-20, TW4-22, TW4-24, and TW4-25 are continually pumped wells. TW4-22, TW4-24, and TW4-25 are pumped under the nitrate program.

TW4-02, TW4-03, TW4-06, TW4-07, TW4-10, TW4-13, TW4-14, TW4-26, TW4-27, TW4-28, TW4-29, TW4-30, TW4-31, TW4-33, TW4-34, TW4-35, and TW4-36 were pumped dry and sampled after recovery. NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

RPD = Relative Percent Difference

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU are included for information purposes only.

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold	Hold Time Check
Trip Blank	Carbon tetrachloride	10/23/2014	10/27/2014	(Days)	Time (Days) 14	OK
	Chloroform	10/23/2014	10/27/2014	4	14	OK
Trip Blank						
Trip Blank	Chloromethane	10/23/2014	10/27/2014	4	14	OK
Trip Blank	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
Trip Blank	Carbon tetrachloride	10/28/2014	11/5/2014	8	14	OK
Trip Blank	Chloroform	10/28/2014	11/5/2014	8	14	OK
Trip Blank	Chloromethane	10/28/2014	11/5/2014	8	14	OK
Trip Blank	Methylene chloride	10/28/2014	11/5/2014	8	14	OK
MW-04	Chloride	10/21/2014	11/2/2014	12	28	OK
MW-04	Carbon tetrachloride	10/21/2014	10/27/2014	6	14	OK
MW-04	Chloroform	10/21/2014	10/28/2014	7	14	OK
MW-04	Chloromethane	10/21/2014	10/27/2014	6	14	OK
MW-04	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
MW-04	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-01	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-01	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-01	Chloroform	10/29/2014	11/5/2014	7	14	OK
TW4-01	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-01	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-01	Nitrate/Nitrite (as N)	10/29/2014	11/3/2014	5	28	OK
TW4-02	Chloride	10/30/2014	11/4/2014	5	28	OK
TW4-02	Carbon tetrachloride	10/30/2014	11/5/2014	6	14	OK
TW4-02	Chloroform	10/30/2014	11/5/2014	6	14	OK
TW4-02	Chloromethane	10/30/2014	11/5/2014	6	14	OK
TW4-02	Methylene chloride	10/30/2014	11/5/2014	6	14	OK
TW4-02	Nitrate/Nitrite (as N)	10/30/2014	11/3/2014	4	28	OK
TW4-03	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-03	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-03	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-03	Chloromethane	10/23/2014	10/27/2014	4	14	OK
TW4-03	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
TW4-03	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	11	28	OK
TW4-03R	Chloride	10/22/2014	11/2/2014	11	28	OK
TW4-03R TW4-03R	Carbon tetrachloride	10/22/2014	10/28/2014	6	14	OK
TW4-03R	Chloroform	10/22/2014	10/28/2014	6	14	OK
TW4-03R TW4-03R	Chloromethane	10/22/2014	10/28/2014	6	14	OK
TW4-03R	Methylene chloride	10/22/2014	10/28/2014	6	14	OK
TW4-03R	Nitrate/Nitrite (as N)	10/22/2014	11/3/2014	12	28	OK
TW4-03K TW4-04	Chloride	10/21/2014	11/2/2014	12	28	OK
			10/27/2014			
TW4-04	Carbon tetrachloride	10/21/2014		6	14	OK
TW4-04	Chloroform	10/21/2014	10/28/2014	7	14	OK
TW4-04	Chloromethane	10/21/2014	10/27/2014	6	14	OK
TW4-04	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
TW4-04	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-05	Chloride	10/28/2014	11/4/2014	7	28	OK
TW4-05	Carbon tetrachloride	10/28/2014	11/4/2014	7	14	OK
TW4-05	Chloroform	10/28/2014	11/4/2014	7	14	OK
TW4-05	Chloromethane	10/28/2014	11/4/2014	7	14	OK
TW4-05	Methylene chloride	10/28/2014	11/4/2014	7	14	OK
TW4-05	Nitrate/Nitrite (as N)	10/28/2014	11/3/2014	6	28	OK
TW4-06	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-06	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-06	Chloroform	10/29/2014	11/5/2014	7	14	OK

1.00				Hold Time	Allowed Hold	Hold Time
Location ID	Parameter Name	Sample Date	Analysis Date	(Days)	Time (Days)	Check
TW4-06	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-06	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-06	Nitrate/Nitrite (as N)	10/29/2014	11/3/2014	5	28	OK
TW4-07	Chloride	10/30/2014	11/4/2014	5	28	OK
TW4-07	Carbon tetrachloride	10/30/2014	11/4/2014	5	14	OK
TW4-07	Chloroform	10/30/2014	11/5/2014	6	14	OK
TW4-07	Chloromethane	10/30/2014	11/4/2014	5	14	OK
TW4-07	Methylene chloride	10/30/2014	11/4/2014	5	14	OK
TW4-07	Nitrate/Nitrite (as N)	10/30/2014	11/3/2014	4	28	OK
TW4-08	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-08	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-08	Chloroform	10/29/2014	11/4/2014	6	14	OK
TW4-08	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-08	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-08	Nitrate/Nitrite (as N)	10/29/2014	11/3/2014	5	28	OK
TW4-09	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-09	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-09	Chloroform	10/29/2014	11/4/2014	6	14	OK
TW4-09	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-09	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-09	Nitrate/Nitrite (as N)	10/29/2014	11/3/2014	5	28	OK
TW4-09R	Chloride	10/28/2014	11/6/2014	9	28	OK
TW4-09R	Carbon tetrachloride	10/28/2014	11/5/2014	8	14	OK
TW4-09R	Chloroform	10/28/2014	11/5/2014	8	14	OK
TW4-09R	Chloromethane	10/28/2014	11/5/2014	8	14	OK
TW4-09R	Methylene chloride	10/28/2014	11/5/2014	8	14	OK
TW4-09R	Nitrate/Nitrite (as N)	10/28/2014	11/11/2014	14	28	OK
TW4-10	Chloride	10/30/2014	11/4/2014	5	28	OK
TW4-10	Carbon tetrachloride	10/30/2014	11/4/2014	5	14	OK
TW4-10	Chloroform	10/30/2014	11/5/2014	6	14	OK
TW4-10	Chloromethane	10/30/2014	11/4/2014	5	14	OK
TW4-10	Methylene chloride	10/30/2014	11/4/2014	5	14	OK
TW4-10	Nitrate/Nitrite (as N)	10/30/2014	11/3/2014	4	28	OK
TW4-10 TW4-11	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-11 TW4-11	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-11 TW4-11	Chloroform	10/29/2014	11/5/2014	7	14	OK
TW4-11 TW4-11	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-11 TW4-11	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-11 TW4-11		10/29/2014	11/3/2014	5	28	OK
	Nitrate/Nitrite (as N) Chloride			10		OK
TW4-12	Carbon tetrachloride	10/23/2014	11/2/2014		28	
TW4-12		10/23/2014	10/28/2014	5	14	OK
TW4-12	Chloroform	10/23/2014	10/28/2014	5	14	OK
TW4-12	Chloromethane	10/23/2014	10/28/2014	5	14	OK
TW4-12	Methylene chloride	10/23/2014	10/28/2014	5	14	OK
TW4-12	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	11	28	OK
TW4-13	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-13	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-13	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-13	Chloromethane	10/23/2014	10/27/2014	4	14	OK
TW4-13	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
TW4-13	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	11	28	OK
TW4-14	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-14	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK

Location ID	Parameter Name	Somely Data	Analusia Data	Hold Time	Allowed Hold	Hold Time
	Parameter Name	Sample Date	Analysis Date	(Days)	Time (Days)	Check
TW4-14 TW4-14	Chloroform	10/23/2014	10/27/2014		14	OK
	Chloromethane	10/23/2014	10/27/2014	4	14	OK
TW4-14	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
TW4-14 MW-26	Nitrate/Nitrite (as N) Chloride	10/23/2014	11/3/2014 11/2/2014	11	28 28	OK
MW-26	Carbon tetrachloride	10/21/2014	10/27/2014	6	14	OK OK
MW-26	Chloroform	10/21/2014	10/28/2014	7	14	OK
MW-26	Chloromethane	10/21/2014	10/27/2014	6	14	OK
MW-26	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
MW-26	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-16	Chloride	10/29/2014	11/3/2014	6	28	OK
TW4-10 TW4-16	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-10 TW4-16	Chloroform	10/29/2014	11/5/2014	7	14	OK
TW4-10 TW4-16	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-16	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-16	Nitrate/Nitrite (as N)	10/29/2014	11/3/2014	5	28	OK
MW-32	Chloride	10/29/2014	11/4/2014	6	28	OK
MW-32 MW-32	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
MW-32	Chloroform	10/29/2014	11/4/2014	6	14	OK
MW-32 MW-32	Chloromethane	10/29/2014	11/4/2014	6	14	OK
MW-32	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
MW-32	Nitrate/Nitrite (as N)	10/29/2014	11/11/2014	13	28	OK
TW4-18	Chloride	10/28/2014	11/4/2014	7	28	OK
TW4-18	Carbon tetrachloride	10/28/2014	11/4/2014	7	14	OK
TW4-18	Chloroform	10/28/2014	11/4/2014	7	14	OK
TW4-18	Chloromethane	10/28/2014	11/4/2014	7	14	OK
TW4-18	Methylene chloride	10/28/2014	11/4/2014	7	14	OK
TW4-18	Nitrate/Nitrite (as N)	10/28/2014	11/3/2014	6	28	OK
TW4-19	Chloride	10/21/2014	11/2/2014	12	28	OK
TW4-19	Carbon tetrachloride	10/21/2014	10/27/2014	6	14	OK
TW4-19	Chloroform	10/21/2014	10/28/2014	7	14	OK
TW4-19	Chloromethane	10/21/2014	10/27/2014	6	14	OK
TW4-19	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
TW4-19	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-20	Chloride	10/21/2014	11/2/2014	12	28	OK
TW4-20	Carbon tetrachloride	10/21/2014	10/27/2014	6	14	OK
TW4-20	Chloroform	10/21/2014	10/28/2014	7	14	OK
TW4-20	Chloromethane	10/21/2014	10/27/2014	6	14	OK
TW4-20	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
TW4-20	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-21	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-21	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-21	Chloroform	10/29/2014	11/5/2014	7	14	OK
TW4-21	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-21	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-21	Nitrate/Nitrite (as N)	10/29/2014	11/3/2014	5	28	OK
TW4-22	Chloride	10/21/2014	11/2/2014	12	28	OK
TW4-22	Carbon tetrachloride	10/21/2014	10/27/2014	6	14	OK
TW4-22	Chloroform	10/21/2014	10/28/2014	7	14	OK
TW4-22	Chloromethane	10/21/2014	10/27/2014	6	14	OK
TW4-22	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
TW4-22	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-23	Chloride	10/28/2014	11/4/2014	7	28	OK

Lengther	Demonstra	Com 1 D .	Andria	Hold Time	Allowed Hold	Hold Time
Location ID	Parameter Name	Sample Date	Analysis Date	(Days)	Time (Days)	Check
TW4-23	Carbon tetrachloride	10/28/2014	11/4/2014	7	14	OK
TW4-23	Chloroform	10/28/2014	11/4/2014	7	14	OK
TW4-23	Chloromethane	10/28/2014	11/4/2014	7	14	OK
TW4-23	Methylene chloride	10/28/2014	11/4/2014	7	14	OK
TW4-23	Nitrate/Nitrite (as N)	10/28/2014	11/11/2014	14	28	OK
TW4-24	Chloride	10/21/2014	11/2/2014	12	28	OK
TW4-24	Carbon tetrachloride	10/21/2014	10/27/2014	6	14	OK
TW4-24	Chloroform	10/21/2014	10/27/2014	6	14	OK
TW4-24	Chloromethane	10/21/2014	10/27/2014	6	14	OK
TW4-24	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
TW4-24	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-25	Chloride	10/21/2014	11/5/2014	15	28	OK
TW4-25	Carbon tetrachloride	10/21/2014	10/27/2014	6	14	OK
TW4-25	Chloroform	10/21/2014	10/27/2014	6	14	OK
TW4-25	Chloromethane	10/21/2014	10/27/2014	6	14	OK
TW4-25	Methylene chloride	10/21/2014	10/27/2014	6	14	OK
TW4-25	Nitrate/Nitrite (as N)	10/21/2014	11/3/2014	13	28	OK
TW4-26	Chloride	10/28/2014	11/4/2014	7	28	OK
TW4-26	Carbon tetrachloride	10/28/2014	11/4/2014	7	14	OK
TW4-26	Chloroform	10/28/2014	11/4/2014	7	14	OK
TW4-26	Chloromethane	10/28/2014	11/4/2014	7	14	OK
TW4-26	Methylene chloride	10/28/2014	11/4/2014	7	14	OK
TW4-26	Nitrate/Nitrite (as N)	10/28/2014	11/3/2014	6	28	OK
TW4-27	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-27	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-27	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-27	Chloromethane	10/23/2014	10/27/2014	4	14	OK
TW4-27	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
TW4-27	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	11	28	OK
TW4-28	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-28	Carbon tetrachloride	10/23/2014	10/28/2014	5	14	OK
TW4-28	Chloroform	10/23/2014	10/28/2014	5	14	OK
TW4-28	Chloromethane	10/23/2014	10/28/2014	5	14	OK
TW4-28	Methylene chloride	10/23/2014	10/28/2014	5	14	OK
TW4-28	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	11	28	OK
TW4-29	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-29	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-29	Chloroform	10/29/2014	11/5/2014	7	14	OK
TW4-29	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-29	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-29	Nitrate/Nitrite (as N)	10/29/2014	11/3/2014	5	28	OK
TW4-29 TW4-30	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-30 TW4-30	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-30	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-30 TW4-30						
	Chloromethane Mathylana ablarida	10/23/2014	10/27/2014	4 4	14	OK
TW4-30	Methylene chloride	10/23/2014	10/27/2014		14	OK
TW4-30	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	11	28	OK
TW4-31	Chloride	10/28/2014	11/4/2014	7	28	OK
TW4-31	Carbon tetrachloride	10/28/2014	11/4/2014	7	14	OK
TW4-31	Chloroform	10/28/2014	11/4/2014	7	14	OK
TW4-31	Chloromethane	10/28/2014	11/4/2014	7	14	OK
TW4-31	Methylene chloride	10/28/2014	11/4/2014	7	14	OK
TW4-31	Nitrate/Nitrite (as N)	10/28/2014	11/3/2014	6	28	OK

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
TW4-32	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-32	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-32	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-32	Chloromethane	10/23/2014	10/27/2014	4	14	OK
TW4-32	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
TW4-32	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	11	28	OK
TW4-33	Chloride	10/29/2014	11/4/2014	6	28	OK
TW4-33	Carbon tetrachloride	10/29/2014	11/4/2014	6	14	OK
TW4-33	Chloroform	10/29/2014	11/4/2014	6	14	OK
TW4-33	Chloromethane	10/29/2014	11/4/2014	6	14	OK
TW4-33	Methylene chloride	10/29/2014	11/4/2014	6	14	OK
TW4-33	Nitrate/Nitrite (as N)	10/29/2014	11/4/2014	6	28	OK
TW4-34	Chloride	10/28/2014	11/4/2014	7	28	OK
TW4-34	Carbon tetrachloride	10/28/2014	11/4/2014	7	14	OK
TW4-34	Chloroform	10/28/2014	11/4/2014	7	14	OK
TW4-34	Chloromethane	10/28/2014	11/4/2014	7	14	OK
TW4-34	Methylene chloride	10/28/2014	11/4/2014	7	14	OK
TW4-34	Nitrate/Nitrite (as N)	10/28/2014	11/3/2014	6	28	OK
TW4-34	Chloride	10/28/2014	11/3/2014	7	28	OK
TW4-35	Carbon tetrachloride	10/28/2014	11/4/2014	7	14	OK
TW4-35	Chloroform	10/28/2014	11/4/2014	7	14	OK
TW4-35	Chloromethane	10/28/2014	11/4/2014	7	14	OK
TW4-35	Methylene chloride	10/28/2014	11/4/2014	7	14	OK
TW4-35	Nitrate/Nitrite (as N)	10/28/2014	11/3/2014	6	28	OK
TW4-35 TW4-36	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-36	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-36	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-36	Chloromethane	10/23/2014	10/27/2014	4	14	OK
TW4-36	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
TW4-36	Nitrate/Nitrite (as N)	10/23/2014	11/11/2014	19	28	OK
TW4-50 TW4-60	Chloride	10/23/2014	11/2/2014	19	28	OK
TW4-60	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-60	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-60	Chloromethane	10/23/2014	10/27/2014	4	14	OK
TW4-60	Methylene chloride	10/23/2014	10/27/2014	4	14	OK
TW4-60	Nitrate/Nitrite (as N)	10/23/2014	11/3/2014	4	28	OK
TW4-65	Chloride	10/23/2014	11/2/2014	10	28	OK
TW4-65	Carbon tetrachloride	10/23/2014	10/27/2014	4	14	OK
TW4-65	Chloroform	10/23/2014	10/27/2014	4	14	OK
TW4-65	Chloromethane	10/23/2014	10/27/2014	4	14	OK
	Methylene chloride	10/23/2014	10/27/2014		14	
TW4-65	Nitrate/Nitrite (as N)	10/23/2014		4	28	OK OK
TW4-65	Chloride	10/23/2014	11/3/2014	<u>11</u>		
TW4-70	Carbon tetrachloride		11/5/2014	8	28	OK
TW4-70	and the second	10/28/2014	11/5/2014	8	14	OK
TW4-70	Chloroform	10/28/2014	11/5/2014	8	14	OK
TW4-70	Chloromethane	10/28/2014	11/5/2014	8	14	OK
TW4-70 TW4-70	Methylene chloride Nitrate/Nitrite (as N)	10/28/2014 10/28/2014	11/5/2014 11/3/2014	8	14 28	OK OK

Table I-3 Recipt Temperature Check

Sample Batch	Wells in Batch	Temperature
1410353	MW-04, MW-26, TW4-03, TW4-03R, TW4-04, TW4-12, TW4-13, TW4-14, TW4-19, TW4-20, TW4-22, TW4-24, TW4-25, TW4-27, TW4-28, TW4-30, TW4-32, TW4-36, TW4-60, TW4-65	1.1 °C
1410466	MW-32, TW4-01, TW4-02, TW4-05, TW4-06, TW4-07, TW4-08, TW4-09, TW4-09R, TW4-10, TW4-11, TW4-16, TW4-18, TW4-21, TW4-23, TW4-26, TW4-29, TW4-31, TW4-33, TW4-34, TW4-35, TW4-70	2.3 °C

I-4 Analytical Method Check

Parameter	Method	Method Used by Lab
	SW8260B or	
Carbon Tetrachloride	SW8260C	SW8260C
	A4500-Cl B or	
	A4500-Cl E or	
Chloride	E300.0	E300.0
	SW8260B or	
Chloroform	SW8260C	SW8260C
	SW8260B or	
Chloromethane	SW8260C	SW8260C
	SW8260B or	
Methylene chloride	SW8260C	SW8260C
Nitrogen	E353.1 or E353.2	E353.2

All parameters were analyzed using the reporting method specificied in the QAP

I-5 Reporting Limit Check

		Lab Reporting			Dilution	Required Reporting	RL
Location	Analyte	Limit	Units	Qualifier	Factor	Limit	Check
Trip Blank	Carbon tetrachloride	1	ug/L	U	1	1	OK
Trip Blank	Chloroform	1	ug/L	U	1	11	OK
Trip Blank	Chloromethane	1	ug/L	U	1	1	OK
Trip Blank	Methylene chloride	1	ug/L	U	1	1	OK
Trip Blank	Carbon tetrachloride	1	ug/L	U	1	1	OK
Trip Blank	Chloroform	1	ug/L	U	1	1	OK
Trip Blank	Chloromethane	1	ug/L	U	1	1	OK
Trip Blank	Methylene chloride	1	ug/L	U	1	1	OK
MW-04	Chloride	10	mg/L		10	1	OK
MW-04	Carbon tetrachloride	1	ug/L	U	1	1	OK
MW-04	Chloroform	50	ug/L		50	1	OK
MW-04	Chloromethane	1	ug/L	U	11	1	OK
MW-04	Methylene chloride	1	ug/L	U	1	1	OK
MW-04	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
MW-26	Chloride	10	mg/L		10	1	OK
MW-26	Carbon tetrachloride	1	ug/L	U	1	1	OK
MW-26	Chloroform	50	ug/L		50	11	OK
MW-26	Chloromethane	1	ug/L	U	1	1	OK
MW-26	Methylene chloride	1	ug/L		1	1	OK
MW-26	Nitrate/Nitrite (as N)	0.1	mg/L		10	0.1	OK
MW-32	Chloride	10	mg/L		10	1	OK
MW-32	Carbon tetrachloride	1	ug/L	U	1	1	OK
MW-32	Chloroform	1	ug/L	U	1	1	OK
MW-32	Chloromethane	1	ug/L	U	1	1	OK
MW-32	Methylene chloride	1	ug/L	U	1	1	OK
MW-32	Nitrate/Nitrite (as N)	0.1	mg/L	U	1	0.1	OK
TW4-01	Chloride Carbon tetrachloride	10	mg/L	U	10	1	OK OK
TW4-01 TW4-01	Chloroform	20	ug/L		20	1	OK
TW4-01 TW4-01	Chloromethane	1	ug/L	U	1	1	OK
TW4-01 TW4-01	Methylene chloride	1	ug/L ug/L	U U	1	1	OK
TW4-01 TW4-01	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-01 TW4-02	Chloride	10	mg/L mg/L		10	1	OK
TW4-02	Carbon tetrachloride	1	ug/L		10	1	OK
TW4-02	Chloroform	50	ug/L ug/L		50	1	OK
TW4-02	Chloromethane	1	ug/L	U	1	1	OK
TW4-02	Methylene chloride	1	ug/L ug/L	U	1	1	OK
TW4-02	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-03	Chloride	10	mg/L		10	1	OK
TW4-03	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-03	Chloroform	1	ug/L	U	1	1	OK
TW4-03	Chloromethane	1	ug/L	U	1	1	OK
TW4-03	Methylene chloride	1	ug/L	U	1	1	OK
TW4-03	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-03R	Chloride	1	mg/L	U	1	1	OK
TW4-03R	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-03R	Chloroform	1	ug/L	U	1	1	OK
TW4-03R	Chloromethane	1	ug/L	U	1	1	OK
TW4-03R	Methylene chloride	1	ug/L	U	1	1	OK
TW4-03R	Nitrate/Nitrite (as N)	0.1	mg/L	U	1	0.1	OK
TW4-04	Chloride	10	mg/L		10	1	OK
TW4-04	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-04	Chloroform	50	ug/L		50	1	OK
TW4-04	Chloromethane	1	ug/L	U	1	1	OK

I-5 Reporting Limit Check

	a series and	Lab Reporting			Dilution	Required Reporting	RL
Location	Analyte	Limit	Units	Qualifier	Factor	Limit	Check
TW4-04	Methylene chloride	1	ug/L	U	1	1	OK
TW4-04	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-05	Chloride	10	mg/L		10	1	OK
TW4-05	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-05	Chloroform	1	ug/L		1	1	OK
TW4-05	Chloromethane	11	ug/L	U	1	1	OK
TW4-05	Methylene chloride	1	ug/L	U	1	1	OK
TW4-05	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-06	Chloride	10	mg/L		10	1	OK
TW4-06	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-06	Chloroform	10	ug/L		10	1	OK
TW4-06	Chloromethane	1	ug/L	U	1	1	OK
TW4-06	Methylene chloride	1	ug/L	U	1	1	OK
TW4-06	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-07	Chloride	10	mg/L		10	1	OK
TW4-07	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-07	Chloroform	20	ug/L		20	1	OK
TW4-07	Chloromethane	1	ug/L	U	1	1	OK
TW4-07	Methylene chloride	1	ug/L	U	1	1	OK
TW4-07	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-08	Chloride	10	mg/L		10	1	OK
TW4-08	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-08	Chloroform	1	ug/L		1	11	OK
TW4-08	Chloromethane	1	ug/L	U	1	1	OK
TW4-08	Methylene chloride	1	ug/L	U	1	1	OK
TW4-08	Nitrate/Nitrite (as N)	0.1	mg/L		1	0.1	OK
TW4-09	Chloride	10	mg/L		10	1	OK
TW4-09	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-09	Chloroform	1	ug/L		1	1	OK
TW4-09	Chloromethane	1	ug/L	U	1	1	OK
TW4-09	Methylene chloride	1	ug/L	U	1	1	OK
TW4-09	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-09R	Chloride	1	mg/L	U	1	11	OK
TW4-09R	Carbon tetrachloride	1	ug/L	U	1	11	OK
TW4-09R	Chloroform	1	ug/L	U	1	1	OK
TW4-09R	Chloromethane	1	ug/L	U	1	1	OK
TW4-09R	Methylene chloride	1	ug/L_	U	1	11	OK
TW4-09R	Nitrate/Nitrite (as N)	0.1	mg/L	U	1	0.1	OK
TW4-10	Chloride	10	mg/L		10	1	OK
TW4-10	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-10	Chloroform	20	ug/L		20	1	OK
TW4-10	Chloromethane	1	ug/L	U	1	1	OK
TW4-10	Methylene chloride	1	ug/L	U	1	1	OK
TW4-10	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-11	Chloride	10	mg/L		10	1	OK
TW4-11	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-11	Chloroform	10	ug/L		10	1	OK
TW4-11	Chloromethane	1	ug/L	U	1	1	OK
TW4-11	Methylene chloride	1	ug/L	U	1	1	OK
TW4-11	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-12	Chloride	10	mg/L		10	1	OK
TW4-12	Carbon tetrachloride	11	ug/L	U	1	1	OK
TW4-12	Chloroform	1	ug/L	U	1	1	OK
TW4-12	Chloromethane	1	ug/L	U	1	1	OK

I-5 Reporting Limit Check

		Lab Reporting		-	Dilution	Required Reporting	RL
Location	Analyte	Limit	Units	Qualifier	Factor	Limit	Checl
TW4-12	Methylene chloride	1	ug/L	U	1	1	OK
TW4-12	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-13	Chloride	10	mg/L		10	1	OK
TW4-13	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-13	Chloroform	1	ug/L	U	1	1	OK
TW4-13	Chloromethane	1	ug/L	U	1	1	OK
TW4-13	Methylene chloride	1	ug/L	U	1	1	OK
TW4-13	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-14	Chloride	10	mg/L		10	1	OK
TW4-14	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-14	Chloroform	1	ug/L		1	1	OK
TW4-14	Chloromethane	1	ug/L	U	1	1	OK
TW4-14	Methylene chloride	1	ug/L	U	1	1	OK
TW4-14	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-16	Chloride	10	mg/L		10	1	OK
TW4-16	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-16	Chloroform	10	ug/L		10	1	OK
TW4-16	Chloromethane	1	ug/L	U	1	1	OK
TW4-16	Methylene chloride	1	ug/L	U	1	1	OK
TW4-16	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-18	Chloride	10	mg/L	TT	10	1	OK
TW4-18	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-18 TW4-18	Chloroform Chloromethane	1	ug/L	U	1	1	OK OK
TW4-18 TW4-18	Methylene chloride	1	ug/L ug/L	U	1	1	OK
TW4-18	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-18 TW4-19	Chloride	100	mg/L mg/L		100	1	OK
TW4-19	Carbon tetrachloride	1	ug/L		1	1	OK
TW4-19	Chloroform	50	ug/L ug/L		50	1	OK
TW4-19	Chloromethane	1	ug/L	U	1	1	OK
TW4-19	Methylene chloride	1	ug/L	U	1	1	OK
TW4-19	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-20	Chloride	100	mg/L		100	1	OK
TW4-20	Carbon tetrachloride	1	ug/L		1	1	OK
TW4-20	Chloroform	500	ug/L		500	1	OK
TW4-20	Chloromethane	1	ug/L		1	1	OK
TW4-20	Methylene chloride	1	ug/L		1	1	OK
TW4-20	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-21	Chloride	100	mg/L		100	1	OK
TW4-21	Carbon tetrachloride	1	ug/L		1	1	OK
TW4-21	Chloroform	10	ug/L		10	1	OK
TW4-21	Chloromethane	1	ug/L	U	1	1	OK
TW4-21	Methylene chloride	1	ug/L	U	1	1	OK
TW4-21	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-22	Chloride	100	mg/L		100	1	OK
TW4-22	Carbon tetrachloride	1	ug/L		1	1	OK
TW4-22	Chloroform	500	ug/L		500	1	OK
TW4-22	Chloromethane	1	ug/L		1	1	OK
TW4-22	Methylene chloride	1	ug/L	U	1	1	OK
TW4-22	Nitrate/Nitrite (as N)	10	mg/L		100	0.1	OK
TW4-23	Chloride	10	mg/L		10	1	OK
TW4-23	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-23	Chloroform	1	ug/L	U	1	1	OK
TW4-23	Chloromethane	1	ug/L	U	1	1	OK

I-5 Reporting Limit Check

		Lab		100	Dilution	Required	DI
		Reporting		0.110	Dilution	Reporting	RL
Location	Analyte Mathylana ablanida	Limit 1	Units	Qualifier U	Factor	Limit	Check
TW4-23 TW4-23	Methylene chloride	0.1	ug/L	U	1	0.1	OK OK
TW4-23	Nitrate/Nitrite (as N) Chloride	100	mg/L	0	100	0.1	OK
TW4-24	Carbon tetrachloride	1	mg/L	U	100		OK
TW4-24 TW4-24	Chloroform	1	ug/L		1	1	OK
TW4-24	Chloromethane	1	ug/L ug/L	U	1	1	OK
TW4-24	Methylene chloride	1	ug/L ug/L	U	1	1	OK
TW4-24	Nitrate/Nitrite (as N)	10	mg/L		100	0.1	OK
TW4-25	Chloride	10	mg/L mg/L		100	1	OK
TW4-25	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-25	Chloroform	1	ug/L ug/L	U	1	1	OK
TW4-25	Chloromethane	1	ug/L	U	1	1	OK
TW4-25	Methylene chloride	1	ug/L	U	1	1	OK
TW4-25	Nitrate/Nitrite (as N)	0.1	mg/L		1	0.1	OK
TW4-26	Chloride	10	mg/L		10	1	OK
TW4-26	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-26	Chloroform	1	ug/L		1	1	OK
TW4-26	Chloromethane	1	ug/L	U	1	1	OK
TW4-26	Methylene chloride	1	ug/L	U	1	1	OK
TW4-26	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-27	Chloride	10	mg/L		10	1	OK
TW4-27	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-27	Chloroform	1	ug/L	U	1	1	OK
TW4-27	Chloromethane	1	ug/L	U	1	1	OK
TW4-27	Methylene chloride	1	ug/L	U	1	1	OK
TW4-27	Nitrate/Nitrite (as N)	10	mg/L		100	0.1	OK
TW4-28	Chloride	10	mg/L		10	1	OK
TW4-28	Carbon tetrachloride	1	ug/L	U	11	1	OK
TW4-28	Chloroform	1	ug/L	U	1	1	OK
TW4-28	Chloromethane	1	ug/L	U	1	1	OK
TW4-28	Methylene chloride	1	ug/L	U	1	1	OK
TW4-28	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-29	Chloride	10	mg/L		10	11	OK
TW4-29	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-29	Chloroform	10	ug/L		10	1	OK
TW4-29	Chloromethane	1	ug/L	U .	1	1	OK
TW4-29	Methylene chloride	1	ug/L	U	1 10	1	OK
TW4-29 TW4-30	Nitrate/Nitrite (as N) Chloride	1 10	mg/L		10	0.1	OK OK
TW4-30	Carbon tetrachloride	1	mg/L ug/L	U	10	1	OK
TW4-30	Chloroform	1	ug/L ug/L	U	1	1	OK
TW4-30	Chloromethane	1	ug/L ug/L	U	1	1	OK
TW4-30	Methylene chloride	1	ug/L ug/L	U	1	1	OK
TW4-30	Nitrate/Nitrite (as N)	0.1	mg/L	0	1	0.1	OK
TW4-30	Chloride	10	mg/L mg/L		10	1	OK
TW4-31	Carbon tetrachloride	1	ug/L	U	10	1	OK
TW4-31	Chloroform	1	ug/L	U	1	1	OK
TW4-31	Chloromethane	1	ug/L ug/L	U	1	1	OK
TW4-31	Methylene chloride	1	ug/L	U	1	1	OK
TW4-31	Nitrate/Nitrite (as N)	0.1	mg/L		- 1	0.1	OK
TW4-32	Chloride	10	mg/L		10	1	OK
TW4-32	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-32	Chloroform	1	ug/L	U	1	1	OK
TW4-32	Chloromethane	1	ug/L	U	1	1	OK

I-5 Reporting Limit Check

Location	Analyte	Lab Reporting Limit	Units	Qualifier	Dilution Factor	Required Reporting Limit	RL Check
TW4-32	Methylene chloride	1	ug/L	U	1	1	OK
TW4-32	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-33	Chloride	10	mg/L		10	1	OK
TW4-33	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-33	Chloroform	1	ug/L		1	1	OK
TW4-33	Chloromethane	1	ug/L	U	1	1	OK
TW4-33	Methylene chloride	1	ug/L	U	1	1	OK
TW4-33	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-34	Chloride	10	mg/L		10	1	OK
TW4-34	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-34	Chloroform	1	ug/L	U	1	1	OK
TW4-34	Chloromethane	1	ug/L	U	1	1	OK
TW4-34	Methylene chloride	1	ug/L	U	1	1	OK
TW4-34	Nitrate/Nitrite (as N)	0.1	mg/L	1	1	0.1	OK
TW4-35	Chloride	10	mg/L		10	1	OK
TW4-35	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-35	Chloroform	1	ug/L	U	1	1	OK
TW4-35	Chloromethane	1	ug/L	U	1	1	OK
TW4-35	Methylene chloride	1	ug/L	U	1	1	OK
TW4-35	Nitrate/Nitrite (as N)	0.1	mg/L		1	0.1	OK
TW4-36	Chloride	10	mg/L		10	1	OK
TW4-36	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-36	Chloroform	1	ug/L	U	1	1	OK
TW4-36	Chloromethane	1	ug/L	U	1	1	OK
TW4-36	Methylene chloride	1	ug/L	U	1	1	OK
TW4-36	Nitrate/Nitrite (as N)	0.1	mg/L	U	1	0.1	OK
TW4-60	Chloride	1	mg/L	U	1	1	OK
TW4-60	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-60	Chloroform	1	ug/L	U	1	1	OK
TW4-60	Chloromethane	1	ug/L	U	1	1	OK
TW4-60	Methylene chloride	1	ug/L	U	1	1	OK
TW4-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	1	0.1	OK
TW4-65	Chloride	10	mg/L		10	1	OK
TW4-65	Carbon tetrachloride	1	ug/L	U	1	1	OK
TW4-65	Chloroform	1	ug/L	U	1	1	OK
TW4-65	Chloromethane	1	ug/L	U	1	1	OK
TW4-65	Methylene chloride	1	ug/L	U	1	1	OK
TW4-65	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK
TW4-70	Chloride	10	mg/L		10	1	OK
TW4-70	Carbon tetrachloride	1	ug/L	Ū	1	1	OK
TW4-70	Chloroform	1	ug/L		1	1	OK
TW4-70	Chloromethane	1	ug/L	U	1	1	OK
TW4-70	Methylene chloride	1	ug/L	U	1	1	OK
TW4-70	Nitrate/Nitrite (as N)	1	mg/L		10	0.1	OK

I-6 Trip Blank Evaluation

Lab Report	Constituent	Result
1410353	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L
1410466	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L

I-7 QA/QC Evaluation for Sample Duplicates

Constituent	TW4-12	TW4-65	%RPD
Chloride (mg/L)	50.2	49.7	1.0
Nitrate + Nitrite (as N)	16.1	15.2	5.8
Carbon Tetrachloride	ND	ND	NC
Chloroform	ND	ND	NC
Chloromethane	ND	ND	NC
Dichloromethane (Methylene Chloride)	ND	ND	NC

Constituent	TW4-05	TW4-70	%RPD
Chloride (mg/L)	45.1	44.5	1.3
Nitrate + Nitrite (as N)	8.31	8.64	3.9
Carbon Tetrachloride	ND	ND	NC
Chloroform	14.6	15	2.7
Chloromethane	ND	ND	NC
Dichloromethane (Methylene Chloride)	ND	ND	NC

RPD = Relative Percent Difference

ND = The analyte was not detected

i.

I-8 QC Control Limits for Analysis and Blanks

Method Blank Detections

All Method Blanks for the quarter were non-detect.

Matrix Spike % Recovery Comparison

					MSD	REC	
Lab Report	Lab Sample ID	Well	Analyte	MS %REC	%REC	Range	RPD
1410353	1410353-001BMS	TW4-25	Nitrate	82.7	85.1	90 - 110	1.28
1410466	1410466-011BMS	TW4-08	Nitrate	83.6	86.9	90 - 110	1.87
		TW4-70 (duplicate of TW4-					
1410466	1410466-021BMS	05)	Nitrate	81.6	79.5	90 - 110	1.26
1410466	1410466-011CMS	TW4-08	Chloroform*	NC	NC	50 - 146	NC

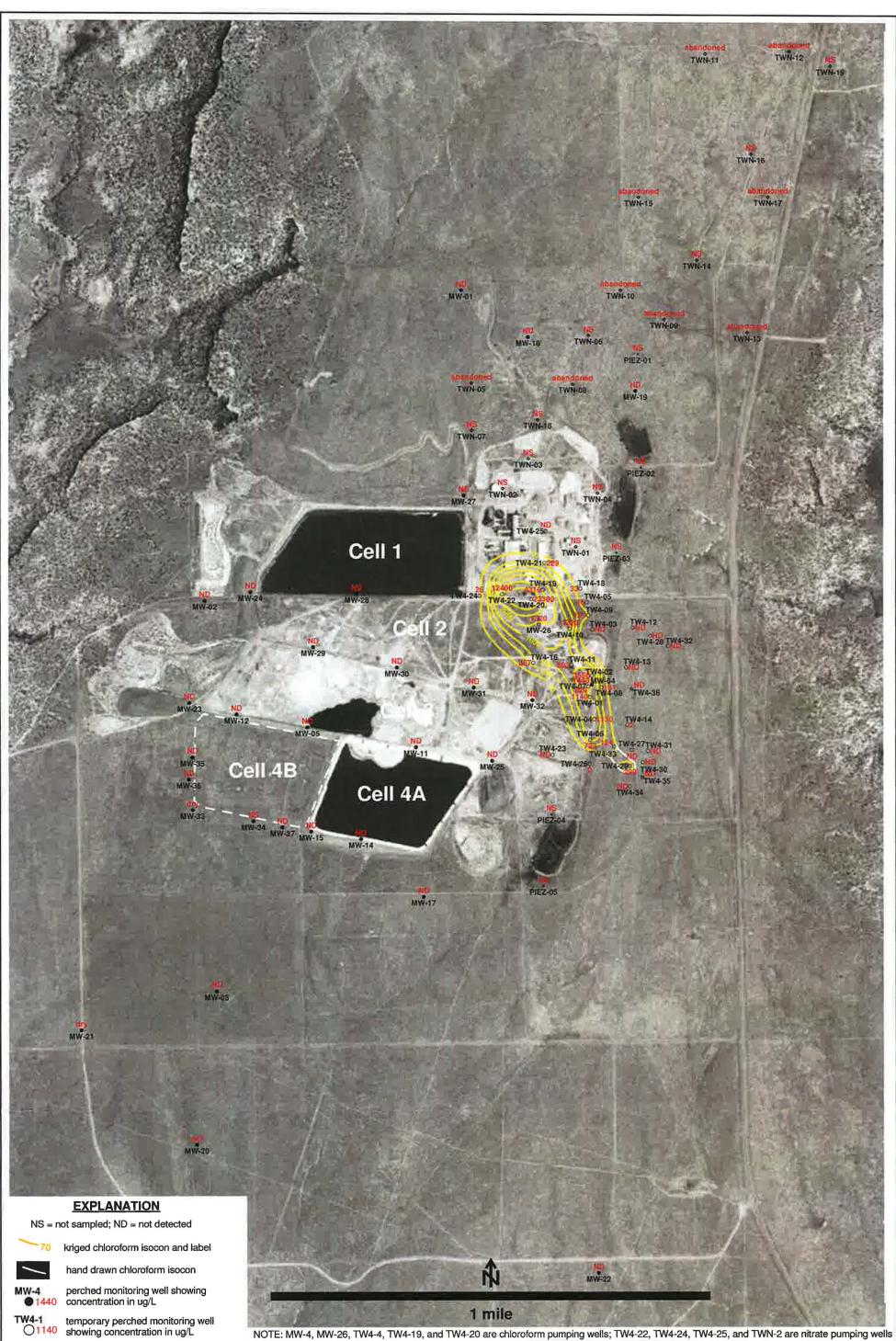
N/A: QC was not performed on an EFRI sample.

* Recovery was not calculated as the analyte level in the sample was greater than 4 times the spike amount

Laboratory Control Sample

All Laboratory Control Samples were within acceptance limits for the quarter.

Surrogate % Recovery


All Surrogate recoveries were within acceptance limits for the quarter,

I-9 Rinsate Evaluation

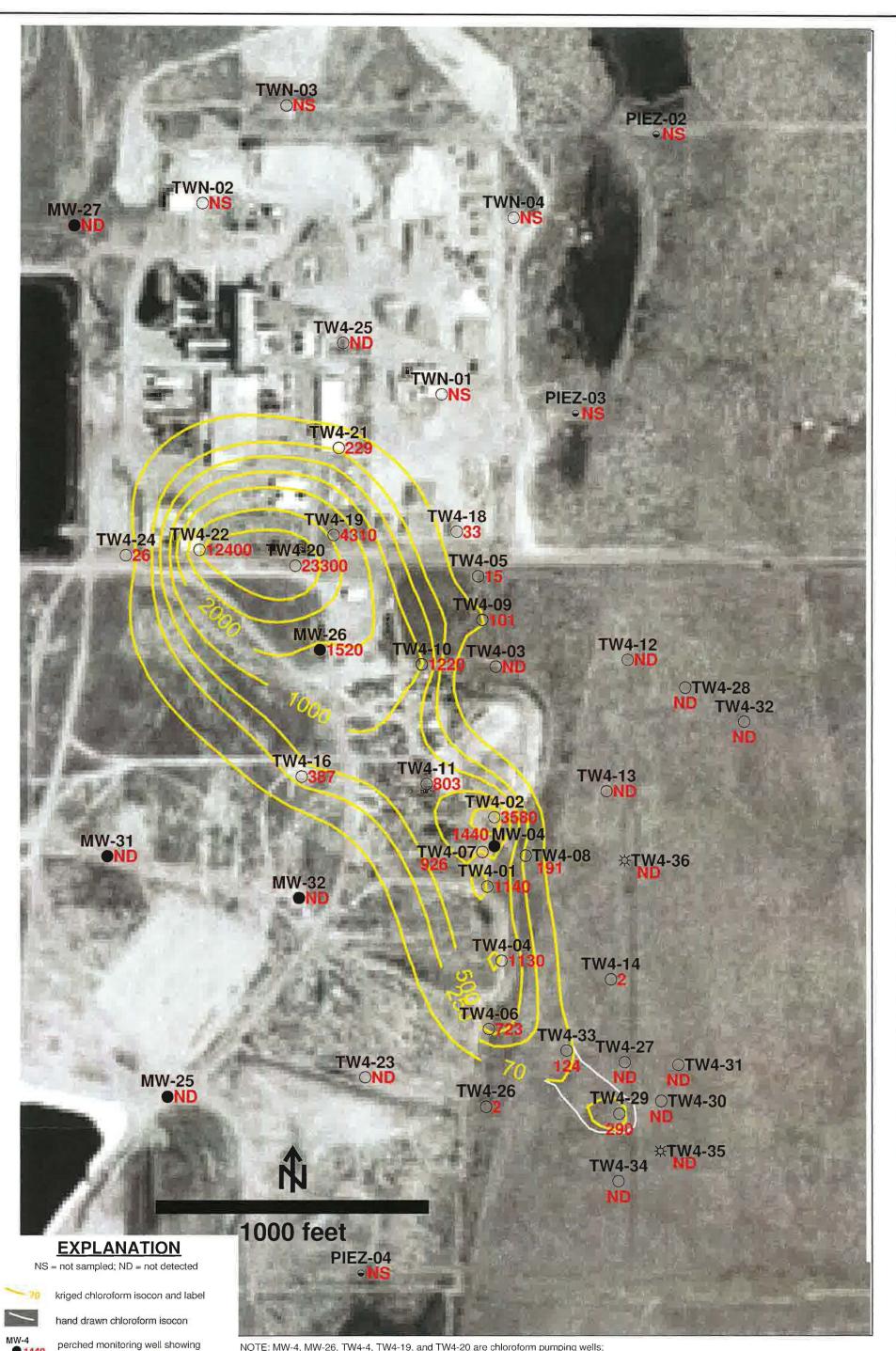
All rinsate blanks results were nondetect for the quarter.

Tab J

Kriged Current Quarter Chloroform Isoconcentration Map

TWN-1

showing concentration in ug/L


temporary perched nitrate monitoring well (not sampled)

TW4-36 **₩ND** perched piezometer (not sampled)

temporary perched monitoring well installed May, 2014 showing concentration in ug/L

	HYDRO GEO CHEM, INC. KRIGED 4th QUARTER, 2014 CHLO WHITE MESA SITE	UARTER, 2014 CHLOROFORM WHITE MESA SITE	/I (ug/L)		
<u>t</u>		APPROVED	DATE	REFERENCE H:/718000/feb15/chloroform/Uchl1214h.srf	FIGURE J-1

NOTE: MW-4, MW-26, TW4-4, TW4-19, and TW4-20 are chloroform pumping wells; TW4-22, TW4-24, TW4-25, and TWN-2 are nitrate pumping wells

1440

O1140

• NS

TW4-1

PIEZ-2

TW4-35 **芬ND** concentration (ug/L)

concentration (ug/L)

concentration (ug/L)

temporary perched monitoring well

temporary perched monitoring well installed May, 2014 showing

showing concentration (ug/L)

perched piezometer showing

	HYDRO GEO CHEM, INC.	KRIGE	D 4th Q	UARTER, 2014 WHITE MESA (detail ma		/l (ugL)
1		APPROVED	DATE	reference feb15/chlorofo	H:/718000/ prm/Uchl1214det.srf	FIGURE

Tab K

Analyte Concentrations Over Time

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Sep-99	6200					
28-Sep-99	5820					
28-Sep-99	6020					
15-Mar-00	5520					
15-Mar-00	5430					
2-Sep-00	5420			<i>n</i>	9.63	
30-Nov-00	6470			A.	9.37	
29-Mar-01	4360		· · · · · · · · · · · · · · · · · · ·		8.77	
22-Jun-01	6300				9.02	1
20-Sep-01	5300				9.45	
8-Nov-01	5200	1			8	
26-Mar-02	4700		••••••••••••••••••••••••••••••••••••••		8.19	
22-May-02	4300				8.21	
12-Sep-02	6000				8.45	
24-Nov-02	2500				8.1	
28-Mar-03	2000				8.3	-
30-Apr-03	3300				NA	
30-May-03	3400				8.2	
23-Jun-03	4300				8.2	
30-Jul-03	3600				8.1	
29-Aug-03	4100		•		8.4	
12-Sep-03	3500			-	8.5	
15-Oct-03	3800				8.1	
8-Nov-03	3800				8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
17-Sep-04	3300				6.71	
17-Nov-04	4300				7.5	-
16-Mar-05	2900				6.3	
25-May-05	3170	NA	NA	NA	7.1	NA
31-Aug-05	3500	<10	<10	<10	7.0	NA
1-Dec-05	3000	<50	<50	<50	7.0	NA
9-Mar-06	3100	<50	<50	50	6	49
14-Jun-06	3000	<50	<50	50	6	49
20-Jul-06	2820	<50	<50	<50	1.2	48
9-Nov-06	2830	2.1	1.4	<1	6.4	50
28-Feb-07	2300	1.6	<1	<1	6.3	47
27-Jun-07	2000	1.8	<1	<1	7	45
15-Aug-07	2600	1.9	<1	<1	6.2	47
10-Oct-07	2300	1.7	<1	<1	6.2	45
26-Mar-08	2400	1.7	<1	<1	5.8	42
25-Jun-08	2500	1.6	<1	<1	6.09	42
10-Sep-08	1800	1.8	<1	<1	6.36	35
15-Oct-08	2100	1.7	<1	<1	5.86	45
4-Mar-09	2200	1.5	<1	<1	5.7	37

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
23-Jun-09	1800	1.3	<1	<1	5.2	34
14-Sep-09	2000	1.4	<1	<1	5.3	43
14-Dec-09	1800	1.6	ND	ND	5.8	44
17-Feb-10	1600	1.2	ND	ND	4	45
14-Jun-10	2100	1.2	ND	ND	5.1	41
16-Aug-10	1900	1.5	ND	ND	4.8	38
11-Oct-10	1500	1.4	ND	ND	4.9	41
23-Feb-11	1700	1.5	ND	ND	4.6	40
1-Jun-11	1700	1.4	ND	ND	4.9	35
17-Aug-11	1700	1.1	ND	ND	4.9	41
16-Nov-11	1600	1.3	ND	ND	5.1	40
23-Jan-12	1500	1	ND	ND	4.8	41
6-Jun-12	1400	1.2	ND	ND	4.9	39
4-Sep-12	1500	1.5	ND	ND	5	41
4-Oct-12	1300	1	ND	ND	4.8	42
11-Feb-13	1670	1.49	ND	ND	4.78	37.8
5-Jun-13	1490	1.31	ND	ND	4.22	44
3-Sep-13	1520	1.13	ND	ND	4.89	41.4
29-Oct-13	1410	5.58	ND	ND	5.25	40.1
27-Jan-14	1390	4.15	ND	ND	4.7	38.5
19-May-14	1390	5.21	ND	ND	4.08	39.9
24-Aug-14	1490	ND	7.6	ND	3.7	41
21-Oct-14	1440	ND	ND	ND	5.07	41.5

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Jun-99	1700				7.2	
10-Nov-99	5.8					-
15-Mar-00	1100					
10-Apr-00	1490					1
6-Jun-00	1530					1
2-Sep-00	2320				5.58	
30-Nov-00	3440				7.79	
29-Mar-01	2340			-	7.15	
22-Jun-01	6000				8.81	
20-Sep-01					12.8	1
8-Nov-01	3200				12.4	
26-Mar-02	3200				13.1	† – – –
22-May-02	2800				12.7	1
12-Sep-02	3300				12.8	
24-Nov-02	3500				13.6	
28-Mar-03	3000		······		12.4	
23-Jun-03	3600				12.5	
12-Sep-03	2700				12.5	
8-Nov-03	3400				11.8	
29-Mar-04	3200				11	1
22-Jun-04	3100				8.78	
17-Sep-04	2800				10.8	
17-Nov-04	3000				11.1	
16-Mar-05	2700		i		9.1	
25-May-05	3080	NA	NA	NA	10.6	NA
31-Aug-05	2900	<10	<10	<10	9.8	NA
1-Dec-05	2400	<50	<50	<50	9.7	NA
9-Mar-06	2700	<50	<50	<50	9.4	49
14-Jun-06	2200	<50	<50	<50	9.8	48
20-Jul-06	2840	<50	<50	<50	9.7	51
8-Nov-06	2260	1.4	<1	<1	9.4	47
28-Feb-07	1900	1.2	<1	<1	8.9	47
27-Jun-07	1900	1.4	<1	<1	9	45
15-Aug-07	2300	1.3	<1	<1	8.4	43
10-Oct-07	2000	1.3	<1	<1	7.8	43
26-Mar-08	2000	1.3	<1	<1	7.6	39
25-Jun-08	1900	1.1	<1	<1	8.68	39
10-Sep-08	1700	1.3	<1	<1	8.15	35
15-Oct-08	1700	1.3	<1	<1	9.3	41

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
11-Mar-09	1700	1.1	<1	<1	7.5	37
24-Jun-09	1500	1	<1	<1	6.9	37
15-Sep-09	1700	<1	<1	<1	7.3	36
29-Dec-09	1400	<1	<1	<1	6.8	41
3-Mar-10	1300	<1	<1	<1	7.1	35
15-Jun-10	1600	1.2	<1	<1	6.8	40
24-Aug-10	1500	<1	<1	<1	6.8	35
14-Oct-10	1500	<1	<1	<1	6.6	40
24-Feb-11	1300	ND	ND	ND	6.6	41
1-Jun-11	1200	ND	ND	ND	7	35
18-Aug-11	1300	ND	ND	ND	6.8	36
29-Nov-11	1300	ND	ND	ND	6.6	37
19-Jan-12	1300	ND	ND	ND	6.8	38
14-Jun-12	1000	ND	ND	ND	7.1	42
13-Sep-12	1000	ND	ND	ND	5	39
4-Oct-12	1100	ND	ND	ND	6.5	40
13-Feb-13	1320	3.66	ND	ND	6.99	37.6
19-Jun-13	1100	ND	ND	ND	6.87	39.1
12-Sep-13	1150	ND	ND	ND	7.12	37.6
14-Nov-13	1280	ND	ND	ND	7.08	36.5
5-Feb-14	1090	5.47	ND	ND	7.74	38.9
23-May-14	1020	4.77	ND	ND	6.93	37.4
27-Aug-14	845	ND	1.4	ND	4.8	38
29-Oct-14	1140	ND	ND	ND	6.31	38.7

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
10-Nov-99	2510					
2-Sep-00	5220					
28-Nov-00	4220				10.7	
29-Mar-01	3890				10.2	
22-Jun-01	5500				9.67	1
20-Sep-01	4900				11.4	1
8-Nov-01	5300				10.1	-
26-Mar-02	5100				9.98	
23-May-02	4700				9.78	
12-Sep-02	6000				9.44	1
24-Nov-02	5400				10.4	************
28-Mar-03	4700				9.5	
23-Jun-03	5100				9.6	
12-Sep-03	3200				8.6	
8-Nov-03	4700				9.7	Í
29-Mar-04	4200				9.14	1
22-Jun-04	4300				8.22	1
17-Sep-04	4100				8.4	1
17-Nov-04	4500				8.6	1
16-Mar-05	3700				7.7	
25-May-05	3750				8.6	1
31-Aug-05	3900	<10	<10	<10	8	NA
1-Dec-05	3500	<50	<50	<50	7.8	NA
9-Mar-06	3800	<50	<50	<50	7.5	56
14-Jun-06	3200	<50	<50	<50	7.1	56
20-Jul-06	4120	<50	<50	<50	7.4	54
8-Nov-06	3420	2.3	<1	<1	7.6	55
28-Feb-07	2900	1.8	<1	<1	7.3	54
27-Jun-07	3000	2.5	<1	<1	7.8	50
15-Aug-07	340	2.2	<1	<1	7.3	49
10-Oct-07	3200	2.1	<1	<1	6.9	51
26-Mar-08	3300	2.3	<1	<1	6.9	48
25-Jun-08	3100	2.2	<1	<1	7.44	46
10-Sep-08	2800	2.4	<1	<1	7.1	42
15-Oct-08	3200	2.4	<2	<2	7.99	47
11-Mar-09	3100	2.2	<1	<1	6.5	46
24-Jun-09	2800	2	<1	<1	6.4	44
15-Sep-09	3000	2	<1	<1	6.6	43
29-Dec-09	1600	2	<1	<1	6.4	46

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
3-Mar-10	2600	2	<1	<1	6.8	42
15-Jun-10	3300	2.6	<1	<1	6.7	43
16-Aug-10	3300	2.5	<1	<1	6.6	43
14-Oct-10	3000	2.1	<1	<1	6.5	41
24-Feb-11	3100	2.4	ND	ND	7	46
2-Jun-11	3000	2.2	ND	ND	6.8	42
17-Aug-11	2400	1.6	ND	ND	6	48
29-Nov-11	3900	2.8	ND	ND	7	49
24-Jan-12	2500	2	ND	ND	7.1	49
14-Jun-12	2500	2.1	ND	ND	7.7	52
13-Sep-12	2900	1.8	ND	ND	4	76
4-Oct-12	3100	2	ND	ND	7.6	49
13-Feb-13	3580	5.17	ND	ND	8.1	46
19-Jun-13	3110	2.65	ND	ND	7.51	46.9
12-Sep-13	3480	2.41	ND	ND	9.3	44.9
14-Nov-13	3740	3.15	ND	ND	8.39	43.9
6-Feb-14	3180	7.1	ND	ND	7.87	45.9
23-May-14	2930	6.05	ND	ND	9.11	45.4
27-Aug-14	3170	1.4	3.6	ND	6.2	45
30-Oct-14	3580	2.6	ND	ND	8.45	45.5

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Jun-99	3500				7.6	
29-Nov-99	702					
15-Mar-00	834					
2-Sep-00	836				1.56	
29-Nov-00	836				1.97	
27-Mar-01	347				1.85	
21-Jun-01	390				2.61	
20-Sep-01	300				3.06	
7-Nov-01	170				3.6	
26-Mar-02	11				3.87	
21-May-02	204				4.34	1
12-Sep-02	203				4.32	1
24-Nov-02	102	· · · · · · · · · · · · · · · · · · ·			4.9	1
28-Mar-03	0				4.6	1
23-Jun-03	0				4.8	1
12-Sep-03	0				4.3	1
8-Nov-03	0				4.8	
29-Mar-04	0				4.48	
22-Jun-04	0				3.68	
17-Sep-04	0				3.88	
17-Nov-04	0				4.1	
16-Mar-05	0				3.5	
25-May-05	<1	NA	NA	NA	3.7	NA
31-Aug-05	<1	<1	6.4	<1	3.5	NA
1-Dec-05	<1	<1	2.3	<1	3.3	NA
9-Mar-06	<1	<1	2.2	<1	3.3	26
14-Jun-06	<1	<1	<1	<1	3.2	26
20-Jul-06	<1	<1	1.6	<1	2.9	26
8-Nov-06	<1	<1	<1	<1	1.5	23
28-Feb-07	<1	<1	<1	<1	3.1	22
27-Jun-07	<1	<1	<1	<1	3.3	23
15-Aug-07	<1	<1	<1	<1	3.1	24
10-Oct-07	<1	<1	<1	<1	2.8	27
26-Mar-08	<1	<1	<1	<1	2.8	21
25-Jun-08	<1	<1	<1	<1	2.85	19
10-Sep-08	<1	<1	<1	<1	2.66	19
15-Oct-08	<1	<1	<1	<1	2.63	22
4-Mar-09	<1	<1	<1	<1	2.5	21
24-Jun-09	<1	<1	<1	<1	2.9	20

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
15-Sep-09	<1	<1	<1	<1	2.8	21
16-Dec-09	<1	<1	<1	<1	2.5	22
23-Feb-10	<1	<1	<1	<1	2.8	23
8-Jun-10	<1	<1	<1	<1	3	24
10-Aug-10	<1	<1	<1	<1	3.1	22
5-Oct-10	<1	<1	<1	<1	3.3	26
15-Feb-11	ND	ND	ND	ND	3.5	23
25-May-11	ND	ND	ND	ND	3.7	23
16-Aug-11	ND	ND	ND	ND	4	23
15-Nov-11	ND	ND	ND	ND	4.4	23
17-Jan-12	ND	ND	ND	ND	4.3	21
31-May-12	ND	ND	ND	ND	4.4	24
29-Aug-12	ND	ND	ND	ND	4.9	25
3-Oct-12	ND	ND	ND	ND	4.8	25
7-Feb-13	ND	ND	ND	ND	5.05	23.7
29-May-13	ND	ND	ND	ND	5.83	23.8
29-Aug-13	ND	ND	ND	ND	6.26	24.0
6-Nov-13	ND	ND	ND	ND	5.89	24.1
22-Jan-14	ND	ND	ND	ND	6.66	24.9
19-May-14	ND	ND	ND	ND	6.01	24
13-Aug-14	ND	ND	ND	ND	5.3	26
23-Oct-14	ND	ND	ND	ND	6.07	27

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0					
2-Sep-00	0					
28-Nov-00	3.9					
28-Mar-01	2260				1.02	
20-Jun-01	3100				14.5	
20-Sep-01	3200				14	1
8-Nov-01	2900				14.8	1
26-Mar-02	3400				15	1
22-May-02	3200				13.2	
12-Sep-02	4000				13.4	
24-Nov-02	3800				12.6	
28-Mar-03	3300				13.4	1
23-Jun-03	3600				12.8	1
12-Sep-03	2900				12.3	
8-Nov-03	3500				12.3	1
29-Mar-04	3200				12.2	
22-Jun-04	3500				12.1	
17-Sep-04	3100				11.1	i
17-Nov-04	3600				10.8	
16-Mar-05	3100				11.6	
25-May-05	2400	NA	NA	NA	11.3	NA
31-Aug-05	3200	<10	<10	<10	9.9	NA
1-Dec-05	2800	<50	<50	<50	10.2	NA
9-Mar-06	2900	<50	<50	<50	9.5	51
14-Jun-06	2600	<50	<50	<50	8.6	48
20-Jul-06	2850	<50	<50	<50	9.7	50
8-Nov-06	2670	1.7	<1	<1	10.1	49
28-Feb-07	2200	1.5	<1	<1	9	49
27-Jun-07	2400	1.7	<1	<1	9.4	47
15-Aug-07	2700	1.5	<1	<1	9.5	45
10-Oct-07	2500	1.5	<1	<1	9.5	47
26-Mar-08	2800	1.6	<1	<1	9.2	43
25-Jun-08	2500	1.5	<1	<1	10.8	42
10-Sep-08	2200	1.4	<1	<1	8.83	39
15-Oct-08	2500	2	<2	<2	10.1	44
4-Mar-09	2200	1.2	<1	<1	10.2	37
24-Jun-09	1800	1.2	<1	<1	8.2	34
15-Sep-09	2000	1.1	<1	<1	8.4	39
29-Dec-09	950	1.1	<1	<1	7.6	41

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Feb-10	1700	1	<1	<1	6.6	48
10-Jun-10	2000	1.2	<1	<1	7.6	35
16-Aug-10	2100	1.3	<1	<1	7.3	36
11-Oct-10	1700	1.3	<1	<1	7.1	38
23-Feb-11	1800	1.4	ND	ND	7	41
1-Jun-11	1700	1.2	ND	ND	7	35
17-Aug-11	1500	ND	ND	ND	6.6	40
16-Nov-11	1500	1	ND	ND	7	39
23-Jan-12	1200	ND	ND	ND	7.1	38
6-Jun-12	1500	ND	ND	ND	7.1	43
4-Sep-12	1600	1.2	ND	ND	7.1	39
3-Oct-12	1400	1	ND	ND	7	38
11-Feb-13	1460	1.12	ND	ND	7.36	39
5-Jun-13	1330	ND	ND	ND	6.3	39.6
3-Sep-13	1380	ND	ND	ND	7.22	38.8
29-Oct-13	1360	5.3	ND	ND	7.84	43.9
27-Jan-14	1260	3.88	ND	ND	7.28	37.4
19-May-14	1220	5	ND	ND	6	47.5
11-Aug-14	1320	ND	7	ND	5	40.0
21-Oct-14	1130	ND	ND	ND	7	40.0

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	29.5					
15-Mar-00	49.0					
2-Sep-00	124					
29-Nov-00	255					
28-Mar-01	236					
20-Jun-01	240					
20-Sep-01	240					1
7-Nov-01	260					
26-Mar-02	260					
22-May-02	300					1
12-Sep-02	330					1
24-Nov-02	260					
28-Mar-03	240					Ì
23-Jun-03	290					
12-Sep-03	200					1
8-Nov-03	240			0		
29-Mar-04	210					1
22-Jun-04	200					T T
17-Sep-04	150					1
17-Nov-04	180					1
16-Mar-05	120					1 T
25-May-05	113	NA	NA	NA	3.7	NA
31-Aug-05	82.0	<2.5	5.8	<2.5	6	NA
1-Dec-05	63.0	<2.5	2.5	<2.5	6	NA
9-Mar-06	66.0	<2.5	3.1	<2.5	6	52
14-Jun-06	51.0	<1	<2.5	<2.5	5.9	51
20-Jul-06	53.7	<1	<1	<1	6.7	54
8-Nov-06	47.1	<1	<1	<1	2.9	55
28-Feb-07	33.0	<1	<1	<1	7.8	57
27-Jun-07	26.0	<1	<1	<1	7	45
15-Aug-07	9.2	<1	<1	<1	7.7	38
10-Oct-07	9.4	<1	<1	<1	8.2	39
26-Mar-08	11.0	<1	<1	<1	7.4	36
25-Jun-08	9.3	<1	<1	<1	8.7	37
10-Sep-08	11.0	<1	<1	<1	7.91	34
15-Oct-08	10.0	<1	<1	<1	9.3	37
4-Mar-09	12.0	<1	<1	<1	7.9	34
24-Jun-09	13.0	<1	<1	<1	7.5	37
15-Sep-09	12.0	<1	<1	<1	8.3	48

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
22-Dec-09	8.5	<1	<1	<1	7.5	41
25-Feb-10	13.0	<1	<1	<1	6.8	43
9-Jun-10	12.0	<1	<1	<1	7.1	28
11-Aug-10	12.0	<1	<1	<1	7	38
13-Oct-10	11.0	<1	<1	<1	7.2	41
22-Feb-11	10.0	ND	ND	ND	7	34
26-May-11	9.0	ND	ND	ND	7.2	35
17-Aug-11	10.0	ND	ND	ND	7.5	37
7-Dec-11	7.9	ND	ND	ND	6	30
18-Jan-12	7.6	ND	ND	ND	5.8	22
6-Jun-12	8.4	ND	ND	ND	8	39
11-Sep-12	12.0	ND	ND	ND	8.1	37
3-Oct-12	8.0	ND	ND	ND	7.7	38
13-Feb-13	10.8	ND	ND	ND	8.24	34.3
13-Jun-13	11.2	ND	ND	ND	10.7	36.5
5-Sep-13	11.6	ND	ND	ND	7.79	39.1
13-Nov-13	14.4	ND	ND	ND	7.75	41.1
30-Jan-14	12.5	ND	ND	ND	9.16	40.5
22-May-14	13.4	ND	ND	ND	7.78	51.4
14-Aug-14	12.0	ND	ND	ND	7.2	44
28-Oct-14	14.6	ND	ND	ND	8.31	45.1

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0					1
2-Sep-00	0					
28-Nov-00	0				ND	<u> </u>
26-Mar-01	0				0.13	
20-Jun-01	0				ND	
20-Sep-01	4				ND	
7-Nov-01	1	1			ND	
26-Mar-02	0		-		ND	
21-May-02	0				ND	
12-Sep-02	0	-			ND	1
24-Nov-02	0				ND	1
28-Mar-03	0				0.1	
23-Jun-03	0				ND	
12-Sep-03	0				ND	1
8-Nov-03	0				ND	
29-Mar-04	0				ND	
22-Jun-04	0				ND	
17-Sep-04	0				ND	
17-Nov-04	0				ND	
16-Mar-05	0				0.2	
25-May-05	2.5	NA	NA	NA	0.4	NA
31-Aug-05	10.0	<1	2.8	<1	0.8	NA
1-Dec-05	17.0	<1	1.3	<1	0.9	NA
9-Mar-06	31.0	<1	<1	<1	1.2	31
14-Jun-06	19.0	<1	<1	<1	1	30
20-Jul-06	11.0	<1	<1	<1	0.6	37
8-Nov-06	42.8	<1	<1	<1	1.4	65
28-Feb-07	46.0	<1	<1	<1	1.5	32
27-Jun-07	11.0	<1	<1	<1	0.6	38
15-Aug-07	18.0	<1	<1	<1	0.7	36
10-Oct-07	18.0	<1	<1	<1	0.8	38
26-Mar-08	52.0	<1	<1	<1	1,1	33
25-Jun-08	24.0	<1	<1	<1	0.9	35
10-Sep-08	39.0	<1	<1	<1	1.14	35
15-Oct-08	37.0	<1	<1	<1	1.01	33
11-Mar-09	81.0	<1	<1	<1	2.2	35
24-Jun-09	120	<1	<1	<1	2.7	37
15-Sep-09	280	<1	<1	<1	5.0	37
22-Dec-09	250	<1	<1	<1	6.1	41
25-Feb-10	1000	<1	<1	<1	1.6	45
10-Jun-10	590	<1	<1	<1	2.5	33
12-Aug-10	630	<1	<1	<1	3.9	31
13-Oct-10	420	<1	<1	<1	4.3	41
23-Feb-11	47	ND	ND	ND	0.7	40

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
26-May-11	10	ND	ND	ND	0.3	42
17-Aug-11	16	ND	ND	ND	0.3	39
7-Dec-11	21	ND	ND	ND	0.8	36
18-Jan-12	38	ND	ND	ND	0.7	38
13-Jun-12	4.7	ND	ND	ND	0.2	40
11-Sep-12	6.9	ND	ND	ND	0.1	21
3-Oct-12	9.0	ND	ND	ND	0.2	41
13-Feb-13	6.9	ND	ND	ND	0.154	40.4
13-Jun-13	4.9	ND	ND	ND	0.155	37.9
5-Sep-13	5.9	ND	ND	ND	0.157	40.6
13-Nov-13	5.5	ND	ND	ND	1.52	40.2
29-Jan-14	5.7	ND	ND	ND	0.184	40.6
22-May-14	10.3	ND	ND	ND	0.312	37
14-Aug-14	202.0	ND	ND	ND	4.2	40
24-Sep-14	260.0	ND	ND	ND	N/A	N/A
29-Oct-14	723.0	ND	ND	ND	6.92	41.1

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Nov-99	256					
15-Mar-00	616					
2-Sep-00	698					
29-Nov-00	684				1.99	1
28-Mar-01	747				2.46	1
20-Jun-01	1100				2.65	
20-Sep-01	1200				3.38	
8-Nov-01	1100				2.5	
26-Mar-02	1500				3.76	
23-May-02	1600				3.89	
12-Sep-02	1500				3.18	
24-Nov-02	2300				4.6	
28-Mar-03	1800				4.8	
23-Jun-03	5200				7.6	
12-Sep-03	3600				7.6	
8-Nov-03	4500				7.1	
29-Mar-04	2500				4.63	
22-Jun-04	2900				4.83	
17-Sep-04	3100				5.59	
17-Nov-04	3800				6	
16-Mar-05	3100				5.2	1
25-May-05	2700	NA	NA	NA	5.4	NA
31-Aug-05	3100	<10	<10	<10	5.2	NA
1-Dec-05	2500	<50	<50	<50	5.3	NA
9-Mar-06	1900	<50	<50	<50	1	48
14-Jun-06	2200	<50	<50	<50	4.5	47
20-Jul-06	2140	<50	<50	<50	4.7	51
8-Nov-06	2160	1.5	<1	<1	4.6	49
28-Feb-07	1800	1.1	<1	<1	5	47
27-Jun-07	2600	1.5	<1	<1	5.1	45
14-Aug-07	2300	1.4	<1	<1	4.7	44
10-Oct-07	1900	1.2	<1	<1	4.7	45
26-Mar-08	2200	1.3	<1	<1	4.2	43
25-Jun-08	1800	1.3	<1	<1	4.8	43
10-Sep-08	1600	1.4	<1	<1	4.16	35
15-Oct-08	1900	<2	<2	<2	4.01	40
11-Mar-09	1800	1.2	<1	<1	3.7	35
24-Jun-09	1400	<1	<1	<1	3.8	37
15-Sep-09	1500	1.0	<1	<1	4.1	37

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Dec-09	1300	<1	<1	<1	4.2	37
3-Mar-10	1200	<1	<1	<1	3.8	36
10-Jun-10	1100	<1	<1	<1	3.9	31
18-Aug-10	1500	1.1	<1	<1	3.9	36
13-Oct-10	1100	1.1	<1	<1	4	38
23-Feb-11	1300	ND	ND	ND	3.6	45
1-Jun-11	1200	ND	ND	ND	4	35
18-Aug-11	1200	ND	ND	ND	4.1	37
29-Nov-11	1000	ND	ND	ND	3.8	37
19-Jan-12	1000	ND	ND	ND	3.9	37
14-Jun-12	790	ND	ND	ND	4	41
13-Sep-12	870	ND	ND	ND	3.8	40
4-Oct-12	940	ND	ND	ND	3.8	41
13-Feb-13	1080	3.51	ND	ND	3.9	37.7
18-Jun-13	953	ND	ND	ND	4.04	39.3
12-Sep-13	1040	ND	ND	ND	4.17	36.4
14-Nov-13	1050	ND	ND	ND	4.13	37.2
5-Feb-14	946	5.41	ND	ND	4.24	38.2
23-May-14	847	4.78	ND	ND	4.19	37.7
27-Aug-14	857	ND	1.5	ND	2.9	39
30-Oct-14	926	ND	ND	ND	3.68	40.2

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Nov-99	0					
15-Mar-00	21.8					1
2-Sep-00	102					
29-Nov-00	107				ND	1
26-Mar-01	116				ND	
20-Jun-01	180				ND	
20-Sep-01	180				0.35	
7-Nov-01	180				ND	
26-Mar-02	190				0.62	
22-May-02	210				0.77	
12-Sep-02	300				ND	1
24-Nov-02	450				ND	
28-Mar-03	320				0.8	
23-Jun-03	420				ND	
12-Sep-03	66.0		•		ND	
8-Nov-03	21.0				0.1	
29-Mar-04	24.0				0.65	
22-Jun-04	110				0.52	
17-Sep-04	120				ND	
17-Nov-04	120				ND	
16-Mar-05	10.0				ND	
25-May-05	<1	NA	NA	NA	0.2	NA
31-Aug-05	1.1	<1	1.7	<1	<0.1	NA
30-Nov-05	<1	<1	<1	<1	<0.1	NA
9-Mar-06	1.3	<1	2.1	<1	0.3	39
14-Jun-06	1.0	<1	1.8	<1	<0.1	37
20-Jul-06	<1	<1	<1	<1	0.1	39
8-Nov-06	<1	<1	<1	<1	<0.1	40
28-Feb-07	2.5	<1	<1	<1	0.7	39
27-Jun-07	2.5	<1	<1	<1	0.2	42
15-Aug-07	1.5	<1	<1	<1	<0.1	42
10-Oct-07	3.5	<1	<1	<1	0.5	43
26-Mar-08	<1	<1	<1	<1	0.1	46
25-Jun-08	<1	<1	<1	<1	< 0.05	45
10-Sep-08	<1	<1	<1	<1	< 0.05	39
15-Oct-08	<1	<1	<1	<1	< 0.05	44
4-Mar-09	<1	<1	<1	<1	<0.1	42
24-Jun-09	<1	<1	<1	<1	<0.1	44
15-Sep-09	<1	<1	<1	<1	<1	44

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Dec-09	<]	<1	<1	<1	<0.1	51
24-Feb-10	<1	<1	<1	<1	<0.1	57
9-Jun-10	<1	<1	<1	<1	< 0.1	42
11-Aug-10	<1	<1	<1	<1	< 0.1	45
5-Oct-10	<1	<1	<1	<1	< 0.1	46
16-Feb-11	ND	ND	ND	ND	ND	52
25-May-11	ND	ND	ND	ND	0.1	45
16-Aug-11	ND	ND	ND	ND	0.1	46
7-Dec-11	ND	ND	ND	ND	0.2	45
18-Jan-12	ND	ND	ND	ND	0.3	45
31-May-12	ND	ND	ND	ND	0.2	44
29-Aug-12	ND	ND	ND	ND	0.1	48
3-Oct-12	ND	ND	ND	ND	ND	47
7-Feb-13	ND	ND	ND	ND	0.411	46.6
30-May-13	ND	ND	ND	ND	ND	45.5
5-Sep-13	ND	ND	ND	ND	ND	47.5
7-Nov-13	ND	ND	ND	ND	ND	46.1
23-Jan-14	63.8	ND	ND	ND	0.166	48.5
6-Feb-14	100	ND	ND	ND	0.165	46.6
22-May-14	122	ND	ND	ND	0.538	53
27-Aug-14	107	ND	ND	ND	0.6	47
29-Oct-14	191	ND	ND	ND	0.914	46.7

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	4.2			and the second second		Î
15-Mar-00	1.9					İ
2-Sep-00	14.2					1
29-Nov-00	39.4				ND	
27-Mar-01	43.6				ND	
20-Jun-01	59.0				0.15	1
20-Sep-01	19.0				0.4	
7-Nov-01	49.0				0.1	
26-Mar-02	41.0				0.5	
22-May-02	38.0			·	0.65	
12-Sep-02	49.0				0.2	
24-Nov-02	51.0				0.6	
28-Mar-03	34.0				0.6	
23-Jun-03	33.0				0.8	
12-Sep-03	32.0				1.1	
8-Nov-03	46.0				1.1	
29-Mar-04	48.0				0.82	
22-Jun-04	48.0				0.75	
17-Sep-04	39.0				0.81	
17-Nov-04	26.0				1.2	
16-Mar-05	3.8				1.3	
25-May-05	1.2	NA	NA	NA	1.3	NA
31-Aug-05	<1	<1	2.9	<1	1.3	NA
1-Dec-05	<1	<1	<1	<1	1.3	NA
9-Mar-06	<1	<1	2.6	<1	1.5	38
14-Jun-06	<1	<1	2.7	<1	1.5	39
20-Jul-06	<1	<1	<1	<1	0.9	41
8-Nov-06	<1	<1	<1	<1	0.7	44
28-Feb-07	<1	<1	<1	<1	0.6	44
27-Jun-07	21	<1	<1	<1	1.3	42
15-Aug-07	9.5	<1	<1	<1	1.8	38
10-Oct-07	8.7	<1	<1	<1	2	40
26-Mar-08	1.3	<1	<1	<1	2.1	35
25-Jun-08	1.0	<1	<1	<1	2.3	35
10-Sep-08	<1	<1	<1	<1	2.79	28
15-Oct-08	<1	<1	<1	<1	1.99	58
4-Mar-09	<1	<1	<1	<1	2.5	30
24-Jun-09	<1	<1	<1	<1	2.3	30
15-Sep-09	<1	<1	<1	<1	2.5	30

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Dec-09	<1	<1	<1	<1	1.7	37
23-Feb-10	<1	<1	<1	<1	1.7	47
9-Jun-10	<1	<1	<1	<1	1.5	33
11-Aug-10	<1	<1	<1	<1	1.2	40
6-Oct-10	<1	<1	<1	<1	1.8	34
17-Feb-11	ND	ND	ND	ND	1.3	41
25-May-11	ND	ND	ND	ND	3.4	38
16-Aug-11	ND	ND	ND	ND	4	21
7-Dec-11	ND	ND	ND	ND	2.3	38
18-Jan-12	ND	ND	ND	ND	2.3	28
31-May-12	ND	ND	ND	ND	4	23
30-Aug-12	ND	ND	ND	ND	3.9	22
3-Oct-12	ND	ND	ND	ND	3.8	21
7-Feb-13	ND	ND	ND	ND	4.12	20.6
30-May-13	ND	ND	ND	ND	4.49	21.4
5-Sep-13	ND	ND	ND	ND	4.03	22.7
7-Nov-13	ND	ND	ND	ND	4.87	23.6
29-Jan-14	ND	ND	ND	ND	4.36	22
21-May-14	6.9	ND	ND	ND	3.44	24
14-Aug-14	46.9	ND	ND	ND	2.7	27
29-Oct-14	101	ND	ND	ND	4.27	25

TW4-10	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
21-Jan-02	14			X U		
26-Mar-02	16				0.14	1
21-May-02	17				0.11	1
12-Sep-02	6				ND	1
24-Nov-02	14				ND	1
28-Mar-03	29				0.2	1
23-Jun-03	110				0.4	
12-Sep-03	74				0.4	
8-Nov-03	75				0.3	
29-Mar-04	22				0.1	
22-Jun-04	32				ND	
17-Sep-04	63		and the second sec		0.46	
17-Nov-04	120	•			0.4	
16-Mar-05	140				1.6	
25-May-05	62.4	NA	NA	NA	0.8	NA
31-Aug-05	110	<2.5	6.2	<2.5	1.1	NA
1-Dec-05	300	<2.5	<2.5	<2.5	3.3	NA
9-Mar-06	190	<5	<50	<50	2.4	50
14-Jun-06	300	<5	<50	<50	3.5	54
20-Jul-06	504	<5	<50	<50	6.8	61
8-Nov-06	452	<1	1.6	1	5.7	58
28-Feb-07	500	<1	<1	1	7.6	62
27-Jun-07	350	<1	<1	1	5.1	54
15-Aug-07	660	<1	<1	1	7.3	59
10-Oct-07	470	<1	<1	1	6.7	59
26-Mar-08	620	<1	<1	1	7.3	55
25-Jun-08	720	<1	<1	1	9.91	58
10-Sep-08	680	<1	<1	1	9.23	51
15-Oct-08	1200	<2	<2	2	10.5	61
11-Mar-09	1100	<1	<1	1	11.6	64
24-Jun-09	1200	<1	<1	1	9.8	62
15-Sep-09	910	<1	<1	1	8.1	51
22-Dec-09	300	<1	<1	<1	3.5	51
3-Mar-10	460	<1	<1	<1	5	49
10-Jun-10	220	<1	<1	<1	1.6	42
12-Aug-10	100	<1	<1	<1	0.8	38
13-Oct-10	1100	<1	<1	<1	11	52
23-Feb-11	620	ND	ND	ND	9	62
1-Jun-11	280	ND	ND	ND	3.3	42

TW4-10	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Aug-11	180	ND	ND	ND	1.9	41
16-Nov-11	110	ND	ND	ND	1.1	45
19-Jan-12	76	ND	ND	ND	0.9	40
13-Jun-12	79	ND	ND	ND	0.8	46
12-Sep-12	130	ND	ND	ND	1.0	44
3-Oct-12	140	ND	ND	ND	1.6	45
13-Feb-13	154	ND	ND	ND	1.2	49.1
13-Jun-13	486	ND	ND	ND	5.6	51.5
12-Sep-13	1160	ND	ND	ND	13.0	67.9
14-Nov-13	1380	ND	ND	ND	16.0	70.9
5-Feb-14	1260	5.16	ND	ND	16.8	73
23-May-14	1110	ND	ND	ND	13.9	77.3
27-Aug-14	1060	ND	1.5	ND	9.8	74
30-Oct-14	1220	ND	ND	ND	13.2	75.2

TW4-11	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
21-Jan-02	4700					1
26-Mar-02	4900				9.6	1
22-May-02	5200				9.07	1
12-Sep-02	6200				8.84	1
24-Nov-02	5800				9.7	
28-Mar-03	5100				9.7	1
23-Jun-03	5700				9.4	1
12-Sep-03	4600				9.9	
8-Nov-03	5200				9.3	
29-Mar-04	5300				9.07	
22-Jun-04	5700				8.74	
17-Sep-04	4800				8.75	
17-Nov-04	5800				9.7	
16-Mar-05	4400				8.7	1
25-May-05	3590	NA	NA	NA	10.3	NA
31-Aug-05	4400	<10	<10	<10	9.4	NA
1-Dec-05	4400	<100	<100	<100	9.4	NA
9-Mar-06	4400	<50	<50	<50	9.2	56
14-Jun-06	4300	<50	<50	<50	10	56
20-Jul-06	4080	<50	<50	<50	10	55
8-Nov-06	3660	1.7	2.7	1.3	10	55
28-Feb-07	3500	1.3	<1	1.6	10.1	54
27-Jun-07	3800	1.6	<1	1.1	10.6	53
15-Aug-07	4500	1.7	<1	1.1	10.2	53
10-Oct-07	4400	1.6	<1	1.2	9.8	53
26-Mar-08	340	<1	<1	<1	7.7	63
25-Jun-08	640	<1	<1	<1	7.28	46
10-Sep-08	900	<1	<1	<1	7.93	42
15-Oct-08	1000	<2	<2	<2	9.46	47
11-Mar-09	1100	<1	<1	<1	7.3	49
24-Jun-09	980	<1	<1	<1	6.8	44
15-Sep-09	1000	<1	<1	<1	7	49
29-Dec-09	860	<1	<1	<1	6.6	46
3-Mar-10	820	<1	<1	<1	6.8	42
10-Jun-10	820	<1	<1	<1	6.9	40
12-Aug-10	800	<1	<1	<1	6.7	43
13-Oct-10	720	<1	<1	<1	6.4	49
23-Feb-11	1000	ND	ND	ND	6.5	46
1-Jun-11	930	ND	ND	ND	7.3	49

TW4-11	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Aug-11	820	ND	ND	ND	7.1	48
16-Nov-11	1500	ND	ND	ND	7.1	46
24-Jan-12	610	ND	ND	ND	6.8	43
13-Jun-12	660	ND	ND	ND	6.7	52
13-Sep-12	740	ND	ND	ND	3	49
4-Oct-12	730	ND	ND	ND	7	50
13-Feb-13	867	3.23	ND	ND	6.83	47.3
18-Jun-13	788	ND	ND	ND	7.42	49.7
12-Sep-13	865	ND	ND	ND	7.8	46.6
13-Nov-13	874	ND	ND	ND	8.01	46.7
5-Feb-14	785	5.19	ND	ND	8.47	48.5
23-May-14	751	ND	ND	ND	6.92	51.6
27-Aug-14	719	ND	1.2	ND	5.4	48
29-Oct-14	803	ND	ND	ND	7.33	56.4

TW4-12	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	2				2.54	
24-Nov-02	0				2.2	
28-Mar-03	0				1.9	1
23-Jun-03	0				1.8	1
12-Sep-03	0				1.8	1
9-Nov-03	0				1.6	
29-Mar-04	0				1.58	
22-Jun-04	0				1.4	
17-Sep-04	0				1.24	
17-Nov-04	0				1.5	
16-Mar-05	0				1.4	
25-May-05	<1	NA	NA	NA	1.6	NA
31-Aug-05	<1	<1	5.8	<1	1.5	NA
1-Dec-05	<1	<1	1.9	<2	1.4	NA
9-Mar-06	<1	<1	2.6	<1	1.3	19
14-Jun-06	<1	<1	1.4	<1	1.4	16
20-Jul-06	<1	<1	<1	<1	1.4	16
8-Nov-06	<1	<1	<1	<1	1.4	16
28-Feb-07	<1	<1	<1	<1	1.5	16
27-Jun-07	<1	<1	<1	<1	1,5	18
15-Aug-07	<1	<1	<1	<1	1.4	29
10-Oct-07	<1	<1	<1	<1	1.4	16
26-Mar-08	<1	<1	<1	<1	1.6	16
25-Jun-08	<1	<1	<1	<1	2.69	19
10-Sep-08	<1	<1	<1	<1	2.65	18
15-Oct-08	<1	<1	<1	<1	2.47	22
4-Mar-09	<1	<1	<1	<1	2.4	23
24-Jun-09	<1	<1	<1	<1	3.8	22
15-Sep-09	<1	<1	<1	<1	5.1	22
16-Dec-09	<1	<1	<1	<1	3.6	23
23-Feb-10	<1	<1	<1	<1	4	22
8-Jun-10	<1	<1	<1	<1	11	29
10-Aug-10	<1	<1	<1	<1	9	35
5-Oct-10	<1	<1	<1	<1	8	31
15-Feb-11	ND	ND	ND	ND	6.5	31
25-May-11	ND	ND	ND	ND	7	32
16-Aug-11	ND	ND	ND	ND	6.8	31
15-Nov-11	ND	ND	ND	ND	8	30
17-Jan-12	ND	ND	ND	ND	7.7	28

TW4-12	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
31-May-12	ND	ND	ND	ND	10	34
29-Aug-12	ND	ND	ND	ND	13	39
3-Oct-12	ND	ND	ND	ND	13	39
7-Feb-13	ND	ND	ND	ND	12.6	36.7
29-May-13	ND	ND	ND	ND	14.2	38.6
29-Aug-13	ND	ND	ND	ND	17.4	41.7
6-Nov-13	ND	ND	ND	ND	16.4	41.4
22-Jan-14	ND	ND	ND	ND	18.4	41.6
21-May-14	ND	ND	ND	ND	17	40.2
27-Aug-14	ND	ND	ND	ND	13	47
23-Oct-14	ND	ND	ND	ND	16.1	50.2

TW4-13	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	ND				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				0.2	
23-Jun-03	ND				0.2	
12-Sep-03	ND				ND	
9-Nov-03	ND				0.9	
29-Mar-04	ND				0.12	
22-Jun-04	ND				0.17	
17-Sep-04	ND				4.43	
17-Nov-04	ND				4.7	
16-Mar-05	ND				4.2	
25-May-05	<1	NA	NA	NA	4.3	NA
31-Aug-05	<1	<1	3.1	<1	4.6	NA
1-Dec-05	<1	<1	<1	<1	4.3	NA
9-Mar-06	<1	<1 <1	1.7	<1	4.2	67 66
14-Jun-06	<1		1.4	<1	4.9	-
20-Jul-06	<1	<1	<1	<1	4.3	65
8-Nov-06	<1	<1	<1	<1	0.8	33
28-Feb-07	<1	<1	<1	<1	4	59
27-Jun-07	<1	<1	<1	<1	4.6	59
15-Aug-07	<1	<1	<1	<1	4.4	58
10-Oct-07	<1	<1	<1	<1	4.1	58
26-Mar-08	<1	<1	<1	<1	3.8	54
25-Jun-08	<1	<1	<1	<1	4.24	58
10-Sep-08	<1	<1	<1	<1	4.26	50
15-Oct-08	<1	<1	<1	<1	4.63	58
						58
4-Mar-09	<1	<1	<1	<1	3.7	
24-Jun-09	<1	<1	<1	<1	1.2	57
15-Sep-09	<1	<1	<1	<1	4.7	63
16-Dec-09	<1	<1	<1	<1	4.1	60
24-Feb-10	<1	<1	<1	<1	4.3	53
8-Jun-10	<1	<1	<1	<1	5.2	52
10-Aug-10	<1	<1	<1	<1	5.6	55
5-Oct-10	<1	<1	<1	<1	5.8	55
15-Feb-11	ND	ND	ND	ND	5.5	60
25-May-11	ND	ND	ND	ND	5.4	56
16-Aug-11	ND	ND	ND	ND	5.2	60
15-Nov-11	ND	ND	ND	ND	5.9	54
17-Jan-12	ND	ND	ND	ND	5.5	55
31-May-12	ND	ND	ND	ND	6	59
29-Aug-12	ND	ND	ND	ND	6.2	60
3-Oct-12	ND	ND	ND	ND	5.9	60
7-Feb-13	ND	ND	ND	ND	6.31	59.3

TW4-13	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-May-13	ND	ND	ND	ND	6.84	56
29-Aug-13	ND	ND	ND	ND	7.16	63.5
6-Nov-13	ND	ND	ND	ND	6.48	58.5
22-Jan-14	ND	ND	ND	ND	7.09	63.1
21-May-14	ND	ND	ND	ND	5.99	56.1
13-Aug-14	ND	ND	ND	ND	4.8	62
23-Oct-14	ND	ND	ND	ND	6.28	66.1

TW4-14	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
8-Nov-06	<1	<1	<1	<1	2.4	37
28-Feb-07	<1	<1	<1	<1	2.3	38
27-Jun-07	<1	<1	<1	<1	1.4	38
15-Aug-07	<1	<1	<1	<1	1.1	36
10-Oct-07	<1	<1	<1	<1	0.8	36
26-Mar-08	<1	<1	<1	<1	0.04	57
25-Jun-08	<1	<1	<1	<1	1.56	35
10-Sep-08	<1	<1	<1	<1	1.34	34
15-Oct-08	<1	<1	<1	<1	0.76	40
4-Mar-09	<1	<1	<1	<1	1.6	35
24-Jun-09	<1	<1	<1	<1	1.4	36
15-Sep-09	<1	<1	<1	<1	1.5	38
16-Dec-09	<1	<1	<1	<1	1.4	34
3-Mar-10	<1	<1	<1	<1	2.5	33
8-Jun-10	<1	<1	<1	<1	2.9	49
10-Aug-10	<1	<1	<1	<1	2.8	35
6-Oct-10	<1	<1	<1	<1	2.9	29
15-Feb-11	ND	ND	ND	ND	1.8	25
16-Aug-11	ND	ND	ND	ND	2.6	33
15-Nov-11	ND	ND	ND	ND	1.7	15
17-Jan-12	ND	ND	ND	ND	1.9	20
31-May-12	ND	ND	ND	ND	3.3	35
29-Aug-12	ND	ND	ND	ND	3.9	37
3-Oct-12	ND	ND	ND	ND	4.2	37
7-Feb-13	ND	ND	ND	ND	4.63	35.2
30-May-13	ND	ND	ND	ND	4.37	38.6
29-Aug-13	ND	ND	ND	ND	4.51	37.6
6-Nov-13	ND	ND	ND	ND	4.81	36.5
22-Jan-14	ND	ND	ND	ND	5.92	35.5
21-May-14	ND	ND	ND	ND	4.87	32.5
13-Aug-14	ND	ND	ND	ND	4.1	38
23-Oct-14	1.7	ND	ND	ND	5.22	38.9

MW-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	3				ND	1
24-Nov-02	0				ND	1
28-Mar-03	0				0.1	1
23-Jun-03	7800				14.5	İ
15-Aug-03	7400				16.8	1
12-Sep-03	2500	-			2.7	
25-Sep-03	2600				2.5	
29-Oct-03	3100				3.1	
8-Nov-03	3000				2.8	
29-Mar-04	NA				NA	1
22-Jun-04	NA				NA	
17-Sep-04	1400				0.53	
17-Nov-04	300				0.2	
16-Mar-05	310				0.3	
30-Mar-05	230				0.2	
25-May-05	442	NA	NA	NA	0.2	NA
31-Aug-05	960	<5	5.4	<5	0.2	NA
1-Dec-05	1000	<50	<50	<50	0.3	NA
9-Mar-06	1100	<50	<50	<50	0.2	52
14-Jun-06	830	<50	<50	<50	0.2	52
20-Jul-06	2170	<50	<50	<50	1.4	65
8-Nov-06	282	<1	<1	2.8	0.3	54
28-Feb-07	570	<1	<1	5.5	0.5	56
27-Jun-07	300	<1	<1	13	0.4	49
15-Aug-07	1400	<1	<1	36	1	57
10-Oct-07	2000	<1	<1	14	0.6	57
26-Mar-08	930	<1	<1	40	0.1	49
25-Jun-08	1300	<1	<1	53	0.56	57
10-Sep-08	630	<1	<1	24	0.24	44
15-Oct-08	1700	<1	<1	100	0.65	64
4-Mar-09	950	<1	<1	51	0.4	49
24-Jun-09	410	<1	<1	12	0.2	48
15-Sep-09	850	<1	<1	30	0.1	46
14-Dec-09	1100	<1	<1	40	2.3	60
17-Feb-10	780	<1	<1	19	0.2	57
9-Jun-10	1900	<1	<1	28	1.1	58
16-Aug-10	2200	<1	<1	21	0.6	49
11-Oct-10	970	<1	<1	6.5	0.7	65
23-Feb-11	450	ND	ND	3.6	0.5	57

MW-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
31-May-11	1800	ND	ND	1.3	0.4	88
17-Aug-11	720	ND	ND	7.2	0.9	58
5-Dec-11	1800	ND	ND	2.9	2	69
7-Feb-12	2400	ND	ND	16	1.7	98
6-Jun-12	3000	ND	ND	21	2.5	73
4-Sep-12	3100	ND	ND	31	2.6	73
4-Oct-12	1200	ND	ND	4	1.8	68
11-Feb-13	2120	ND	ND	9.34	2.27	81.9
5-Jun-13	4030	ND	ND	52.4	2.11	77.9
3-Sep-13	2940	ND	ND	33.2	1.18	60.5
29-Oct-13	1410	ND	ND	4.03	1.38	72.3
27-Jan-14	1400	ND	ND	13.8	0.549	59.4
19-May-14	1960	ND	ND	15.4	0.928	53.4
11-Aug-14	2120	ND	8.7	26	0.7	59
21-Oct-14	2090	ND	ND	23.2	0.934	60.1

TW4-16	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	140				ND	
24-Nov-02	200				ND	
28-Mar-03	260				ND	
23-Jun-03	370				ND	
12-Sep-03	350				ND	
8-Nov-03	400				ND	
29-Mar-04	430				ND	
22-Jun-04	530				ND	1
17-Sep-04	400				ND	
17-Nov-04	350				ND	
16-Mar-05	240				ND	1
25-May-05	212	NA	NA	NA	<0.1	NA
31-Aug-05	85	<1	3.2	43	<0.1	NA
1-Dec-05	14	<2.5	2.6	5.9	1.4	NA
9-Mar-06	39.0	<1	1,1	21	3	60
14-Jun-06	13.0	<1	2.4	8.9	1.9	55
20-Jul-06	5.2	<1	<1	2.7	2.7	60
8-Nov-06	13.6	<1	<1	9.2	5.6	62
28-Feb-07	8.7	<1	<1	6.5	12.3	79
27-Jun-07	2.6	<1	<1	1.8	9.9	75
15-Aug-07	7.1	<1	<1	5.1	5.4	66
10-Oct-07	1.4	<1	<1	<1	4.4	69
26-Mar-08	11.0	<1	<1	26	ND	52
25-Jun-08	<1	<1	<1	<1	1.46	58
10-Sep-08	10	<1	<1	14	10.5	71
15-Oct-08	3.9	<1	<1	6.6	9.82	89
4-Mar-09	<1	<1	<1	<1	9.6	78
24-Jun-09	<1	<1	<1	<1	8.9	76
15-Sep-09	<1	<1	<1	<1	8.8	79
17-Dec-09	<1	<1	<1	<1	5.2	76
24-Feb-10	<1	<1	<1	<1	4.2	77
9-Jun-10	2.1	<1	<1	<1	4.7	64
24-Aug-10	4.3	<1	<1	<1	4.6	72
6-Oct-10	3.0	<1	<1	<1	3.3	72
22-Feb-11	15.0	ND	ND	ND	7	86
26-May-11	16.0	ND	ND	ND	5	81
17-Aug-11	9.2	ND	ND	ND	1.7	63
16-Nov-11	ND	ND	ND	1.4	0.4	38
18-Jan-12	ND	ND	ND	1.7	0.1	48

TW4-16	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
31-May-12	ND	ND	ND	ND	ND	53
30-Aug-12	ND	ND	ND	ND	ND	59
3-Oct-12	ND	ND	ND	3	ND	53
7-Feb-13	ND	ND	ND	3	ND	58.1
30-May-13	ND	ND	ND	4.21	ND	49.8
5-Sep-13	ND	ND	ND	ND	ND	54.4
7-Nov-13	13.4	ND	ND	ND	1.37	56.6
29-Jan-14	6.9	ND	ND	ND	3.16	66.8
22-May-14	14.6	ND	ND	ND	4.94	80.7
14-Aug-14	229.0	ND	ND	ND	5.1	80
24-Sep-14	371.0	ND	ND	ND	N/A	N/A
29-Oct-14	387.0	ND	ND	ND	8.40	92.1

MW-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	1.6				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				ND	
23-Jun-03	ND				ND	
12-Sep-03	ND				ND	
8-Nov-03	ND				ND	
29-Mar-04	ND				ND	
22-Jun-04	ND				ND	
17-Sep-04	ND				ND	
17-Nov-04	ND				ND	
16-Mar-05	ND				ND	
30-Mar-05	ND				ND	
25-May-05	<1	NA	NA	NA	< 0.1	NA
31-Aug-05	<1	<1	3.2	<1	<0.1	NA
1-Dec-05	<1	<1	<1	<1	< 0.1	NA
9-Mar-06	<1	<1	<1	<1	< 0.1	32
14-Jun-06	<1	<1	3.5	<1	<0.1	30
20-Jul-06	<1	<1	1.8	<1	<0.1	32
8-Nov-06	<1	<1	1.5	<1	<0.1	31
28-Feb-07	<1	<1	<1	<1	< 0.1	32
27-Jun-07	<1	<1	<1	<1	<0.1	32
15-Aug-07	<1	<1	<1	<1	< 0.1	31
10-Oct-07	<1	<1	<1	<1	<0.1	32
26-Mar-08	<1	<1	<1	<1	<0.1	31
25-Jun-08	<1	<1	<1	<1	< 0.05	29
10-Sep-08	<1	<1	<1	<1	< 0.05	30
15-Oct-08	<1	<1	<1	<1	< 0.05	26
4-Mar-09	<1	<1	<1	<1	< 0.1	30
24-Jun-09	<1	<1	<1	<1	<0.1	31
15-Sep-09	<1	<1	<1	<1	<0.1	33
16-Dec-09	<1	<1	<1	<1	<0.1	34
17-Feb-10	<1	<1	<1	<1	<0.1	38
14-Jun-10	<1	<1	<1	<1	<0.1	32
16-Aug-10	<1	<1	<1	<1	<0.1	28
6-Oct-10	<1	<1	<1	<1	< 0.1	24
23-Feb-11	ND	ND	ND	ND	ND	40
25-May-11	ND	ND	ND	ND	ND	31
16-Aug-11	ND	ND	ND	ND	ND	33
6-Dec-11	ND	ND	ND	ND	ND	32

MW-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
18-Jan-12	ND	ND	ND	ND	ND	21
4-Jun-12	ND	ND	ND	ND	ND	32
5-Sep-12	ND	ND	ND	ND	ND	33
10-Oct-12	ND	ND	ND	ND	ND	35
13-Feb-13	ND	ND	ND	ND	ND	34.3
18-Jun-13	ND	ND	ND	ND	ND	34.9
4-Sep-13	ND	ND	ND	ND	ND	33
29-Oct-13	ND	ND	ND	ND	ND	35.7
29-Jan-14	ND	ND	ND	ND	ND	34
23-May-14	ND	ND	ND	ND	ND	39.7
26-Aug-14	ND	ND	ND	ND	ND	34
29-Oct-14	ND	ND	ND	ND	ND	34.9

TW4-18	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	440				1.49	
24-Nov-02	240				13.3	
28-Mar-03	160				13.1	Í
23-Jun-03	110				19	
12-Sep-03	68.0				19.9	
9-Nov-03	84.0				20.7	
29-Mar-04	90.0				14	
22-Jun-04	82.0				12.2	
17-Sep-04	38.0				14.5	
17-Nov-04	51.0				17.3	1
16-Mar-05	38.0	(14.1	1
25-May-05	29.8	NA	NA	NA	12.9	NA
31-Aug-05	39	<1	2.8	<1	13.3	NA
1-Dec-05	14	<1	1.1	<1	7.3	NA
9-Mar-06	12.0	<1	1.1	<1	5.9	5.9
14-Jun-06	12.0	<1	1.6	<1	4.7	35
20-Jul-06	10.8	<1	2.7	<1	6.1	35
8-Nov-06	139	<1	<1	<1	8.7	34
28-Feb-07	9.2	<1	<1	<1	5.1	30
27-Jun-07	8.0	<1	<1	<1	4.9	28
15-Aug-07	8.9	<1	<1	<1	5	32
10-Oct-07	7.4	<1	<1	<1	4.4	27
26-Mar-08	6.4	<1	<1	<1	0.7	23
25-Jun-08	5.7	<1	<1	<1	4.55	23
10-Sep-08	8.0	<1	<1	<1	4.68	26
15-Oct-08	9.4	<1	<1	<1	5,15	30
4-Mar-09	11.0	<1	<1	<1	5.2	29
24-Jun-09	16.0	<1	<1	<1	6.2	30
15-Sep-09	13.0	<1	<1	<1	5.9	26
22-Dec-09	8.2	<1	<1	<1	5.4	30
24-Feb-10	69.0	<1	<1	<1	5.1	41
9-Jun-10	29.0	<1	<1	<1	9	35
12-Aug-10	29.0	<1	<1	<1	9	37
13-Oct-10	30.0	<1	<1	<1	10	50
22-Feb-11	39.0	ND	ND	ND	10	52
26-May-11	26.0	ND	ND	ND	9	36
17-Aug-11	29.0	ND	ND	ND	4.6	23
7-Dec-11	28.0	ND	ND	ND	6.3	23
19-Jan-12	25.0	ND	ND	ND	4.4	18

TW4-18	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
13-Jun-12	24.0	ND	ND	ND	6.6	30
11-Sep-12	38.0	ND	ND	ND	6.6	26
3-Oct-12	30.0	ND	ND	ND	6	27
13-Feb-13	34.9	ND	ND	ND	5.58	23.1
13-Jun-13	37.9	ND	ND	ND	8.86	22.9
5-Sep-13	41.0	ND	ND	ND	12.1	36.2
13-Nov-13	44.3	ND	ND	ND	14.2	37.1
30-Jan-14	38.9	ND	ND	ND	12.8	40.9
22-May-14	34.8	ND	ND	ND	12.2	47
14-Aug-14	32.8	ND	ND	ND	9.8	49
28-Oct-14	33.0	ND	ND	ND	11.1	40.8

TW4-19	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	7700				47.6	
24-Nov-02	5400				42	
28-Mar-03	4200				61.4	
15-May-03	4700				NA	
23-Jun-03	4500				11.4	
15-Jul-03	2400				6.8	
15-Aug-03	2600				4	
12-Sep-03	2500				5.7	
25-Sep-03	4600				9.2	
29-Oct-03	4600				7.7	1
9-Nov-03	2600				4.8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	1
16-Aug-04	7100				9.91	
17-Sep-04	2600				4.5	
17-Nov-04	1800				3.6	
16-Mar-05	2200				5.3	
25-May-05	1200				5.7	
31-Aug-05	1400	<5	<5	<5	4.6	NA
1-Dec-05	2800	<50	<50	<50	<0.1	NA
9-Mar-06	1200	<50	<50	<50	4	86
14-Jun-06	1100	<50	<50	<50	5.2	116
20-Jul-06	1120	<50	<50	<50	4.3	123
8-Nov-06	1050	1.6	2.6	<1	4.6	134
28-Feb-07	1200	1.3	<1	<1	4	133
27-Jun-07	1800				2.3	
15-Aug-07	1100	1.9	<1	<1	4.1	129
10-Oct-07	1100	1.9	<1	<1	4	132
26-Mar-08	1800	2.9	<1	<1	2.2	131
25-Jun-08	1000	1	<1	<1	2.81	128
10-Sep-08	3600	8.6	<1	<1	36.2	113
15-Oct-08	4200	12	<1	<1	47.8	124
4-Mar-09	1100	1.2	<1	<1	3.2	127
24-Jun-09	990	1.2	<1	<1	2.4	132
15-Sep-09	6600	15	<1	<1	0.1	43
14-Dec-09	4700	16	<1	<1	26.7	124
17-Feb-10	940	1.3	<1	<1	2	144
9-Jun-10	1800	4.2	<1	<1	4.4	132
16-Aug-10	2000	4.9	<1	<1	5.9	142

TW4-19	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
11-Oct-10	1200	1.3	<1	<1	2.7	146
17-Feb-11	3400	17	ND	ND	17	135
7-Jun-11	4000	8.3	ND	ND	12	148
17-Aug-11	970	2.1	ND	ND	3	148
5-Dec-11	2200	5.4	ND	ND	5	148
23-Jan-12	650	1.5	ND	ND	0.6	138
6-Jun-12	460	1.1	ND	ND	2.4	149
5-Sep-12	950	3.5	ND	ND	2.5	149
3-Oct-12	1500	4	ND	ND	4.1	150
11-Feb-13	4210	5.15	ND	ND	7.99	164
5-Jun-13	2070	5.15	ND	ND	2.95	148
3-Sep-13	8100	20.7	ND	ND	17.6	179
29-Oct-13	942	6.42	ND	ND	4.7	134
27-Jan-14	586	4.05	ND	ND	1.62	134
19-May-14	810	5.51	ND	ND	1.34	152
11-Aug-14	1410	1.9	8.3	ND	1.6	140
21-Oct-14	4310	4.8	ND	ND	4.72	130

TW4-20	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	39000	NA	NA	NA	10.1	NA
31-Aug-05	3800	<10	<10	<10	2.9	NA
1-Dec-05	19000	<250	<250	<250	1.8	NA
9-Mar-06	9200	<500	<500	<500	3.8	120
14-Jun-06	61000	<500	<500	<500	9.4	235
20-Jul-06	5300	<1000	<1000	<1000	2.9	134
8-Nov-06	11000	7.1	1.9	2.2	3.5	124
28-Feb-07	4400	3.1	<1	1.1	4.2	124
27-Jun-07	1800	2.2	<1	<1	2.3	112
15-Aug-07	5200	3.5	<1	1.8	2.1	117
10-Oct-07	9000	6.8	<1	1.9	5.6	170
26-Mar-08	13000	9	<1	1.5	0.9	132
25-Jun-08	30000	13	<1	1.2	7.96	191
10-Sep-08	21000	15	<1	3.7	4.44	156
15-Oct-08	NA	NA	NA	NA	5.51	166
4-Mar-09	8200	5.7	<1	5.2	5.1	164
24-Jun-09	6800	4.9	<2	4.2	2.9	164
15-Sep-09	13000	8.4	<2	4.4	3.3	153
14-Dec-09	15000	14	<1	3	5.3	187
17-Feb-10	3500	2.7	<1	3.2	2	179
14-Jun-10	18000	11	<1	3.7	5.6	200
16-Aug-10	15000	12	<1	2.2	5.3	196
11-Oct-10	24000	20	<1	5.5	4.6	203
23-Feb-11	31000	27	ND	19	4.4	220
1-Jun-11	8100	10	ND	2.1	4.8	177
17-Aug-11	6800	7.3	ND	3.1	6.5	207
16-Nov-11	7900	7.2	ND	2.5	4.2	186
23-Jan-12	11000	10	ND	1.3	7.9	207
6-Jun-12	36000	33	ND	ND	11	262
4-Sep-12	13000	26	ND	ND	10.8	289
3-Oct-12	19000	22	ND	ND	11	302
11-Feb-13	18500	19.6	ND	1.21	9.07	252
5-Jun-13	26300	32.5	ND	1.13	9.76	250
3-Sep-13	26800	25.7	ND	2.14	8.65	260
29-Oct-13	15700	17.3	ND	1.37	9.64	272
27-Jan-14	17800	18.4	ND	2.04	7.56	254
19-May-14	22100	22.1	2.31	3.98	5.95	269
11 - Aug-14	12400	14.1	55.2	2.2	4.3	299
21-Oct-14	23300	18.5	4.04	2.38	7.67	292

TW4-21	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	192	NA	NA	NA	14.6	NA
31-Aug-05	78	<5	<5	<5	10.1	NA
1-Dec-05	86	<1	1.0	<1	9.6	NA
9-Mar-06	120	<2.5	<2.5	<2.5	8.5	347
14-Jun-06	130	<2.5	<2.5	<2.5	10.2	318
20-Jul-06	106	<2.5	<2.5	<2.5	8.9	357
8-Nov-06	139	2	<1	<1	8.7	296
28-Feb-07	160	1.8	<1	<1	8.7	306
27-Jun-07	300	5.8	<1	<1	8.6	327
15-Aug-07	140	<1	<1	<1	8.6	300
10-Oct-07	120	<1	<1	<1	8.3	288
26-Mar-08	380	7	<1	<1	14.3	331
25-Jun-08	160	1.7	<1	<1	8.81	271
10-Sep-08	120	1.6	<1	<1	7.57	244
15-Oct-08	170	2	<1	<2	8.00	284
11-Mar-09	180	<1	<1	<1	8.3	279
24-Jun-09	200	<1	<1	<1	8.1	291
15-Sep-09	140	<1	<1	<1	9.2	281
22-Dec-09	160	<1	<1	<1	8.4	256
25-Feb-10	170	<1	<1	<1	8.4	228
10-Jun-10	210	1.2	<1	<1	12	266
12-Aug-10	390	9.2	<1	<1	14	278
13-Oct-10	200	1.2	<1	<1	7	210
22-Feb-11	230	1.2	ND	ND	9	303
28-Jun-11	290	4.8	ND	ND	12	290
17-Aug-11	460	6.3	ND	ND	14	287
7-Dec-11	390	6.7	ND	ND	13	276
19-Jan-12	420	6.4	ND	ND	15	228
13-Jun-12	400	5.4	ND	ND	11	285
13-Sep-12	410	6	ND	ND	13	142
4-Oct-12	390	7	ND	ND	14	270
13-Jan-13	282	5.25	ND	ND	11.8	221
18-Jun-13	328	3.49	ND	ND	13.8	243
12-Sep-13	244	2.13	ND	ND	10.3	207
13-Nov-13	204	ND	ND	ND	9	206
5-Feb-14	220	6.23	ND	ND	11.4	200
22-May-14	240	4.73	ND	ND	11.5	243
27-Aug-14	204	ND	ND	ND	7.1	230
29-Oct-14	229	1.04	ND	ND	10	252

TW4-22	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	340	NA	NA	NA	18.2	NA
31-Aug-05	290	<5	<5	<5	15.7	NA
1-Dec-05	320	<5	<5	<5	15.1	NA
9-Mar-06	390	<10	<10	<10	15.3	236
14-Jun-06	280	<10	<10	<10	14.3	221
20-Jul-06	864	<10	<10	<10	14.5	221
8-Nov-06	350	<1	1.6	<1	15.9	236
28-Feb-07	440	<1	<1	<1	20.9	347
27-Jun-07	740	<1	<1	<1	19.3	273
15-Aug-07	530	<1	<1	<1	19.3	259
10-Oct-07	440	<1	<1	<1	18.8	238
26-Mar-08	1400	<1	<1	<1	39.1	519
25-Jun-08	1200	<1	<1	<1	41.9	271
10-Sep-08	6300	1.3	<1	<1	38.7	524
15-Oct-08	630	<2	<2	<2	36.3	539
11-Mar-09	390	<1	<1	<1	20.7	177
24-Jun-09	730	<1	<1	<1	20.6	177
15-Sep-09	2300	<1	<1	<1	40.3	391
29-Dec-09	380	<1	<1	<1	17.8	175
3-Mar-10	2200	<1	<1	<1	36.6	427
15-Jun-10	540	<1	<1	<1	19	134
24-Aug-10	340	<1	<1	<1	15	130
13-Oct-10	340	<1	<1	<1	16	134
23-Feb-11	1300	ND	ND	ND	18	114
1-Jun-11	210	ND	ND	ND	17	138
17-Aug-11	450	ND	ND	ND	15	120
7-Dec-11	400	ND	ND	ND	19	174
19-Jan-12	200	ND	ND	ND	14	36
13-Jun-12	120	ND	ND	ND	12.8	35
12-Sep-12	940	ND	ND	ND	7	121
4-Oct-12	330	ND	ND	ND	14	130
11-Feb-13	10600	3.24	ND	ND	58	635
5-Jun-13	12500	3.35	ND	ND	50.2	586
3-Sep-13	9640	3.25	ND	ND	29.7	487
29-Oct-13	13300	8.09	ND	ND	45.2	501
27-Jan-14	12100	6.06	ND	2.83	54.6	598
19-May-14	12400	6.65	ND	ND	47.2	614
11-Aug-14	12400	1.9	40	ND	41.5	540
21-Oct-14	12400	3.32	1.61	ND	54.9	596

TW4-23	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	<1	<1	<1	<1	< 0.1	47
15-Aug-07	<1	<1	<1	<1	<0.1	46
10-Oct-07	<1	<1	<1	<1	<0.1	43
26-Mar-08	<1	<1	<1	<1	<0.1	41
25-Jun-08	<1	<1	<1	<1	< 0.05	41
10-Sep-08	<1	<1	<1	<1	< 0.05	35
15-Oct-08	<2	<2	<2	<2	< 0.05	51
4-Mar-09	<1	<1	<1	<1	< 0.1	41
24-Jun-09	<1	<1	<1	<1	<0.1	43
15-Sep-09	<1	<1	<1	<1	< 0.1	43
16-Dec-09	<1	<1	<1	<1	<0.1	37
24-Feb-10	<1	<1	<1	<1	<0.1	45
8-Jun-10	<1	<1	<1	<1	< 0.1	40
10-Aug-10	<1	<1	<1	<1	<0.1	40
5-Oct-10	<1	<1	<1	<1	< 0.1	34
16-Feb-11	ND	ND	ND	ND	ND	44
25-May-11	ND	ND	ND	ND	ND	44
16-Aug-11	ND	ND	ND	ND	ND	41
15-Nov-11	ND	ND	ND	ND	ND	43
17-Jan-12	ND	ND	ND	ND	ND	40
31-May-12	ND	ND	ND	ND	ND	44
29-Aug-12	ND	ND	ND	ND	ND	46
3-Oct-12	ND	ND	ND	ND	ND	45
7-Feb-13	ND	ND	ND	ND	ND	43.6
30-May-13	ND	ND	ND	ND	0.116	44.7
5-Sep-13	ND	ND	ND	ND	ND	48.0
7-Nov-13	ND	ND	ND	ND	ND	43.0
23-Jan-14	ND	ND	ND	ND	ND	44.6
21-May-14	ND	ND	ND	ND	ND	42.3
13-Aug-14	ND	ND	ND	ND	ND	46.0
28-Oct-14	ND	ND	ND	ND	ND	46.8

TW4-24	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	2.6	<1	<1	<1	26.1	770
15-Aug-07	2.2	<1	<1	<1	29	791
10-Oct-07	1.5	<1	<1	<1	24.7	692
26-Mar-08	1.5	<1	<1	<1	24.4	740
25-Jun-08	1.4	<1	<1	<1	45.3	834
10-Sep-08	2.9	<1	<1	<1	38.4	1180
15-Oct-08	<2	<2	<2	<2	44.6	1130
4-Mar-09	1.4	<1	<1	<1	30.5	1010
24-Jun-09	1.5	<1	<1	<1	30.4	759
15-Sep-09	1.4	<1	<1	<1	30.7	618
17-Dec-09	1.2	<1	<1	<1	28.3	1080
25-Feb-10	1.3	<1	<1	<1	33.1	896
9-Jun-10	1.7	<1	<1	<1	30	639
24-Aug-10	1.8	<1	<1	<1	31	587
6-Oct-10	1.4	<1	<1	<1	31	522
17-Feb-11	1.8	ND	ND	ND	31	1100
26-May-11	1.1	ND	ND	ND	35	1110
17-Aug-11	1.7	ND	ND	ND	34	967
7-Dec-11	1.2	ND	ND	ND	35	608
18-Jan-12	ND	ND	ND	ND	37	373
6-Jun-12	ND	ND	ND	ND	37	355
30-Aug-12	1.1	ND	ND	ND	37	489
3-Oct-12	1.0	ND	ND	ND	38	405
11-Feb-13	5.7	ND	ND	ND	35.9	1260
5-Jun-13	17.4	ND	ND	ND	23.7	916
3-Sep-13	21.8	ND	ND	ND	32.6	998
29-Oct-13	32.5	ND	ND	ND	34.6	1030
27-Jan-14	78.5	ND	ND	1.18	31.6	809
19-May-14	62.7	ND	ND	ND	35	1020
11-Aug-14	76.3	ND	ND	ND	31.5	1150
21-Oct-14	25.8	ND	ND	ND	35.7	1050

TW4-25	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	<1	<1	<1	<1	17.1	395
15-Aug-07	<1	<1	<1	<1	16.7	382
10-Oct-07	<1	<1	<1	<1	17	356
26-Mar-08	<1	<1	<1	<1	18.7	374
25-Jun-08	<1	<1	<1	<1	22.1	344
10-Sep-08	<1	<1	<1	<1	18.8	333
15-Oct-08	<2	<2	<2	<2	21.3	366
4-Mar-09	<1	<1	<1	<1	15.3	332
24-Jun-09	<1	<1	<1	<1	15.3	328
15-Sep-09	<1	<1	<1	<1	3.3	328
16-Dec-09	<1	<1	<1	<1	14.2	371
23-Feb-10	<1	<1	<1	<1	14.4	296
8-Jun-10	<1	<1	<1	<1	16	306
10-Aug-10	<1	<1	<1	<1	14	250
5-Oct-10	<1	<1	<1	<1	15	312
16-Feb-11	ND	ND	ND	ND	15	315
25-May-11	ND	ND	ND	ND	16	321
16-Aug-11	ND	ND	ND	ND	16	276
15-Nov-11	ND	ND	ND	ND	16	294
18-Jan-12	ND	ND	ND	ND	16	304
31-May-12	ND	ND	ND	ND	16	287
11-Sep-12	ND	ND	ND	ND	17	334
3-Oct-12	ND	ND	ND	ND	17	338
11-Feb-13	ND	ND	ND	ND	9.04	190
5-Jun-13	ND	ND	ND	ND	5.24	136
3-Sep-13	ND	ND	ND	ND	5.69	119
29-Oct-13	ND	ND	ND	ND	6.1	88.6
27-Jan-14	ND	ND	ND	ND	2.16	85.7
19-May-14	ND	ND	ND	ND	1.21	51.1
11-Aug-14	ND	ND	ND	ND	1.6	67
21-Oct-14	ND	ND	ND	ND	1.03	58.1

TW4-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
15-Jun-10	13	<1	<1	<1	7.9	33
11-Aug-10	5	<1	<1	<1	9	17
6-Oct-10	5.4	<1	<1	<1	9.6	22
22-Feb-11	2.0	ND	ND	ND	10	30
26-May-11	2.9	ND	ND	ND	10	15
17-Aug-11	2.8	ND	ND	ND	11	19
7-Dec-11	5.2	ND	ND	ND	10	26
18-Jan-12	7.0	ND	ND	ND	11	17
6-Jun-12	4.1	ND	ND	ND	12	19
11-Sep-12	4.9	ND	ND	ND	9	19
3-Oct-12	6.0	ND	ND	ND	12	19
7-Feb-13	5.0	ND	ND	ND	12.5	16.6
13-Jun-13	2.1	ND	ND	ND	13.6	14.5
5-Sep-13	2.8	ND	ND	ND	11.7	17.6
7-Nov-13	3.4	ND	ND	ND	15.9	15.9
29-Jan-14	1.4	ND	ND	ND	14.2	16.9
21-May-14	4.2	ND	ND	ND	12.5	15.4
11-Aug-14	1.3	ND	ND	ND	10.8	15
28-Oct-14	2.45	ND	ND	ND	12.3	14.6

TW4-27	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
24-Jan-12	9	ND	ND	ND	24	11
13-Jun-12	ND	ND	ND	ND	41	17
30-Aug-12	ND	ND	ND	ND	37	21
3-Oct-12	ND	ND	ND	ND	36	18
7-Feb-13	ND	ND	ND	ND	31.2	18.8
30-May-13	ND	ND	ND	ND	29.4	20.3
29-Aug-13	ND	ND	ND	ND	27.2	19
6-Nov-13	ND	ND	ND	ND	29.8	21.8
23-Jan-14	ND	ND	ND	ND	31.3	21.8
21-May-14	ND	ND	ND	ND	31.1	20.6
13-Aug-14	ND	ND	ND	ND	27.0	23
23-Oct-14	ND	ND	ND	ND	28.2	24.4

TW4-28	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	14.9	44.6
29-Aug-13	ND	ND	ND	ND	17.3	45.3
6-Nov-13	ND	ND	ND	ND	16.2	45.2
22-Jan-14	ND	ND	ND	ND	16.9	47.8
21-May-14	ND	ND	ND	ND	16.5	45.7
13-Aug-14	ND	ND	ND	ND	14.2	50
23-Oct-14	ND	ND	ND	ND	16.5	52.1

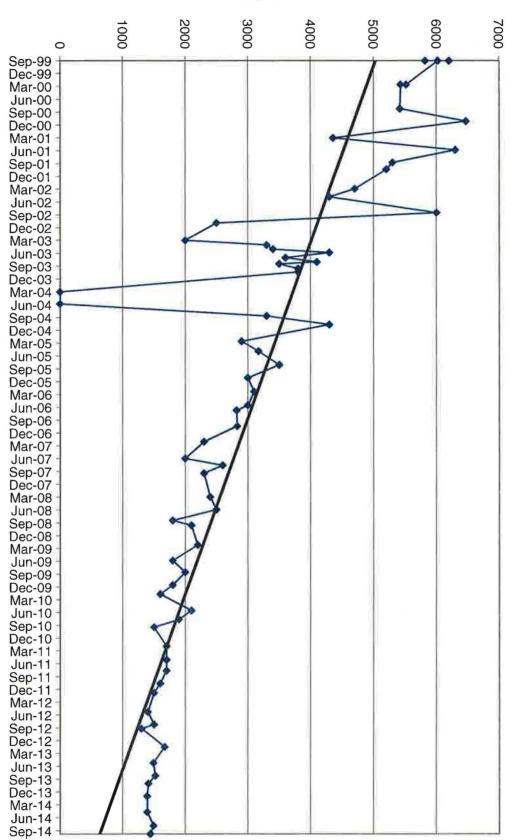
TW4-29	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	242	ND	ND	ND	4.63	44.8
11-Jul-13	262	ND	ND	ND	3.52	37.7
26-Sep-13	246	ND	ND	ND	4.18	41.4
13-Nov-13	260	ND	ND	ND	4.11	42.5
5-Feb-14	258	ND	ND	ND	4.63	41.9
22-May-14	262	ND	ND	ND	3.52	38.2
27-Aug-14	242	ND	ND	ND	3.4	41
29-Oct-14	290	ND	ND	ND	3.64	41

TW4-30	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	0.948	36
29-Aug-13	ND	ND	ND	ND	0.952	36.3
7-Nov-13	ND	ND	ND	ND	1.24	35.9
23-Jan-14	ND	ND	ND	ND	1.36	36
21-May-14	ND	ND	ND	ND	1.44	31.99
13-Aug-14	ND	ND	ND	ND	1.5	38
23-Oct-14	ND	ND	ND	ND	1.84	37.1

TW4-31	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
19-Jun-13	ND	ND	ND	ND	1.26	28.4
5-Sep-13	ND	ND	ND	ND	1.1	29.4
7-Nov-13	ND	ND	ND	ND	1.33	28
23-Jan-14	ND	ND	ND	ND	1.32	28.5
21-May-14	ND	ND	ND	ND	1.22	26.3
13-Aug-14	ND	ND	ND	ND	1.1	30
28-Oct-14	ND	ND	ND	ND	1.23	30

TW4-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	The second second second second second second second second second second second second second second second s	Nitrate (mg/l)	Chloride (mg/l)
14-Nov-13	ND	ND	ND	ND	4.26	52.1
22-Jan-14	ND	ND	ND	ND	5.11	54.5
21-May-14	ND	ND	ND	ND	5.63	54.9
13-Aug-14	ND	ND	ND	ND	4.2	64
23-Oct-14	ND	ND	ND	ND	2.14	62.6

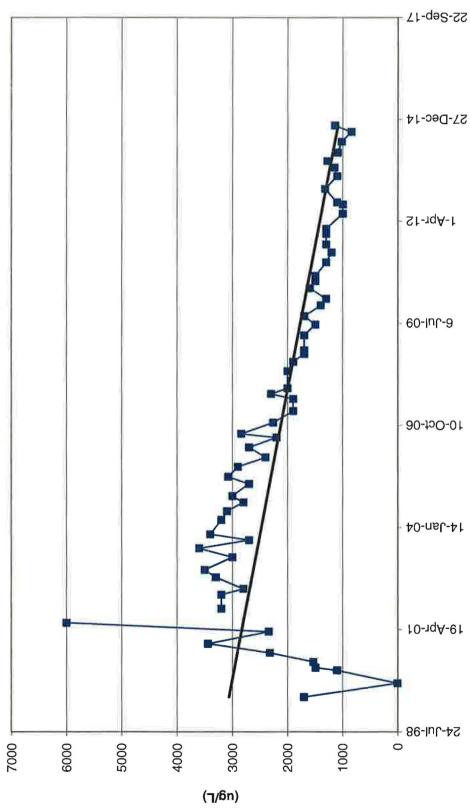
TW4-33	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
14-Nov-13	126	ND	ND	ND	1.82	47.2
30-Jan-14	124	ND	ND	ND	2.56	43.5
22-May-14	121	ND	ND	ND	1.63	46.8
27-Aug-14	104	ND	ND	ND	1.5	43
29-Oct-14	124	ND	ND	ND	2.22	44.2

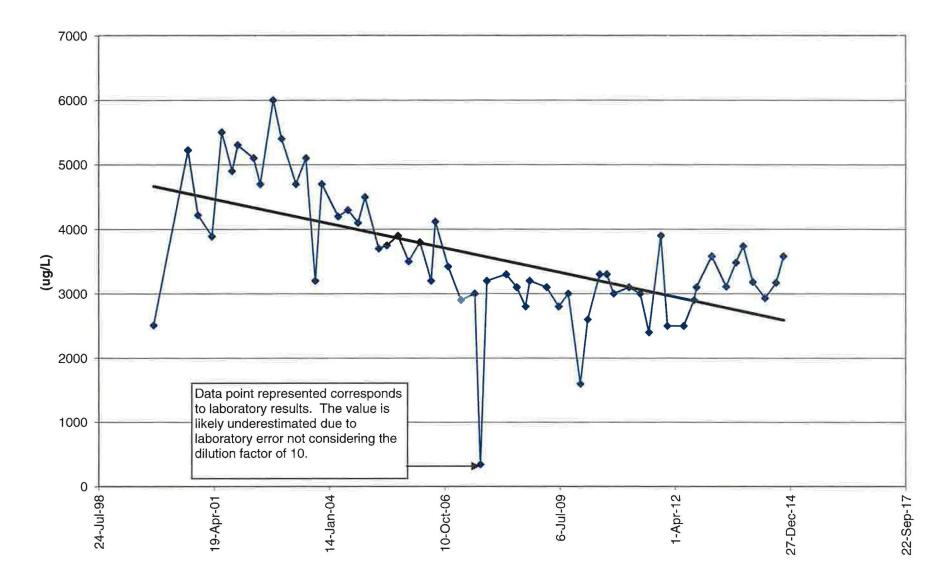

TW4-34	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
14-Nov-13	ND	ND	ND	ND	1.64	19.2
23-Jan-14	ND	ND	ND	ND	1.94	20.4
21-May-14	ND	ND	ND	ND	1.69	17.9
13-Aug-14	ND	ND	ND	ND	1.1	18
28-Oct-14	ND	ND	ND	ND	1.16	17.5

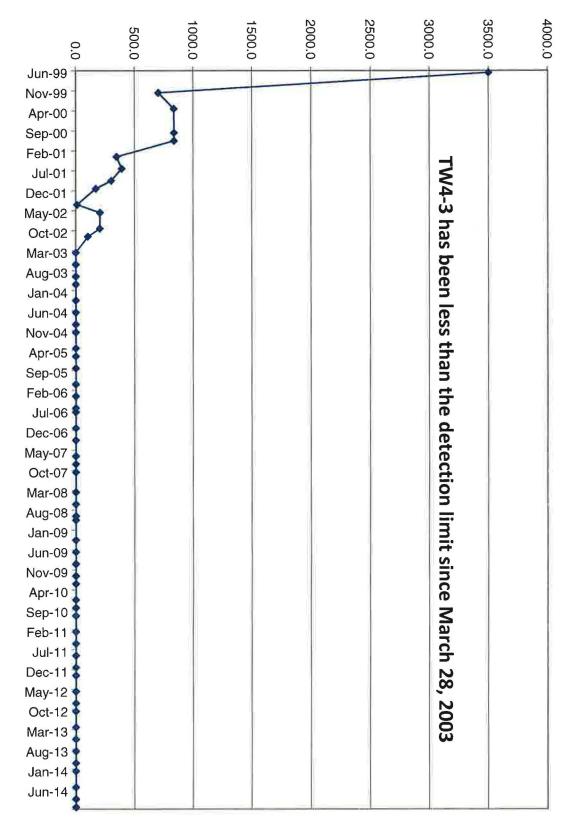
TW4-35	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	1 August 1 August 1	Chloride (mg/l)
27-Aug-14	ND	ND	ND	ND	0.2	34
28-Oct-14	ND	ND	ND	ND	0.351	34.1

TW4-36	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)		Chloride (mg/l)
27-Aug-14	ND	ND	ND	ND	ND	65
23-Oct-14	ND	ND	ND	ND	ND	67.3

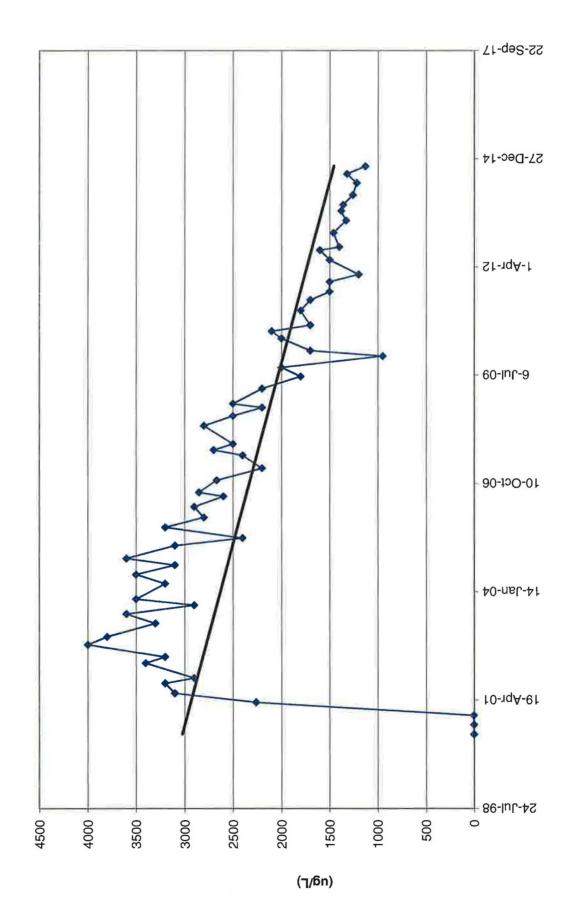
Tab L

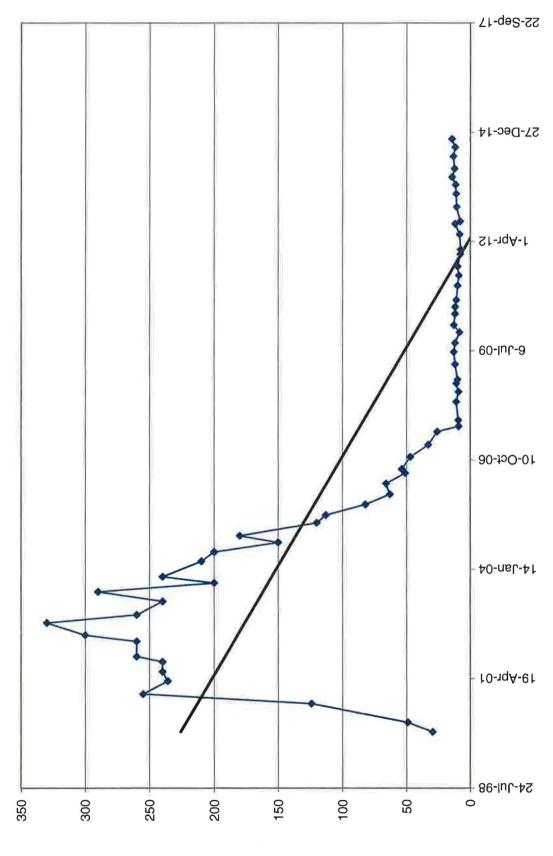

Chloroform Concentration Trend Graphs


MW4-Chloroform Values

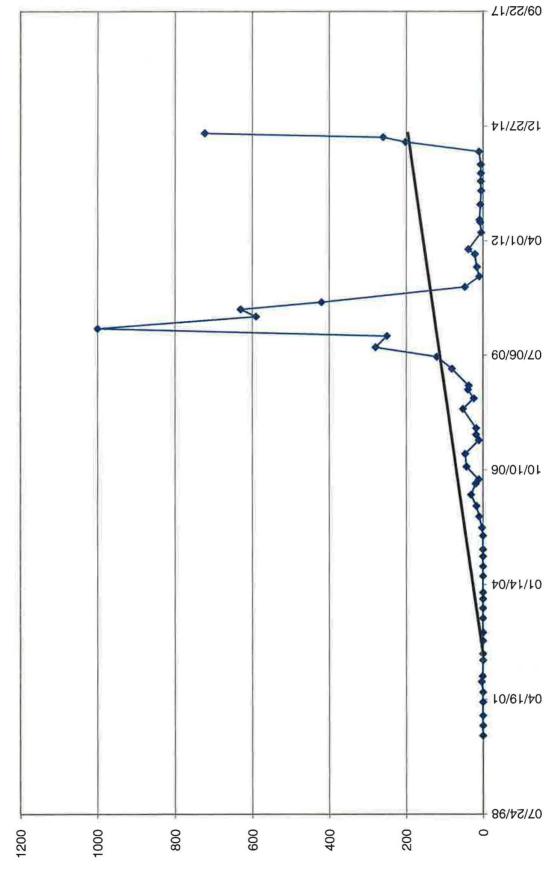

(ug/L)

TW4-1 Chloroform Values

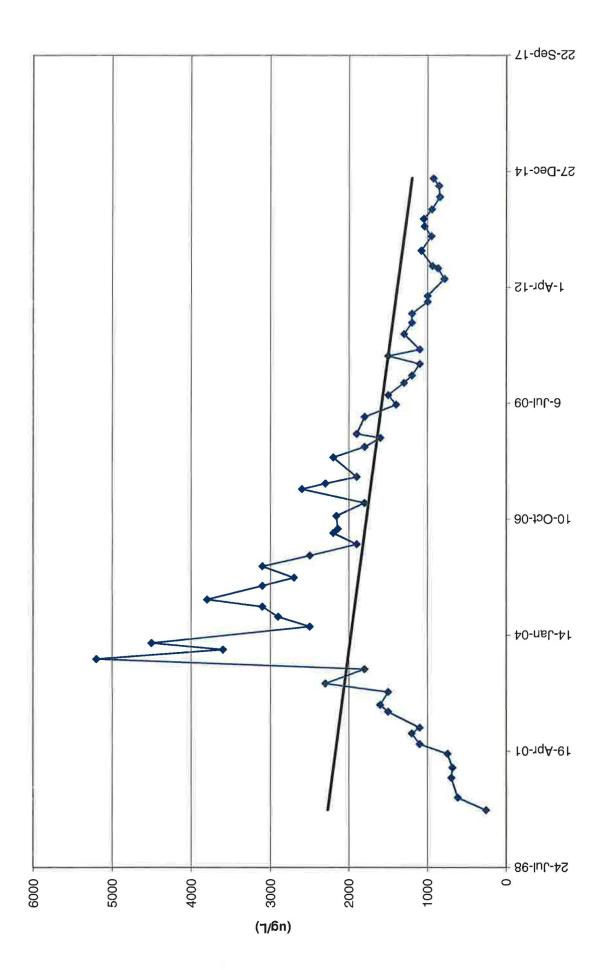

TW4-2 Chloroform Values

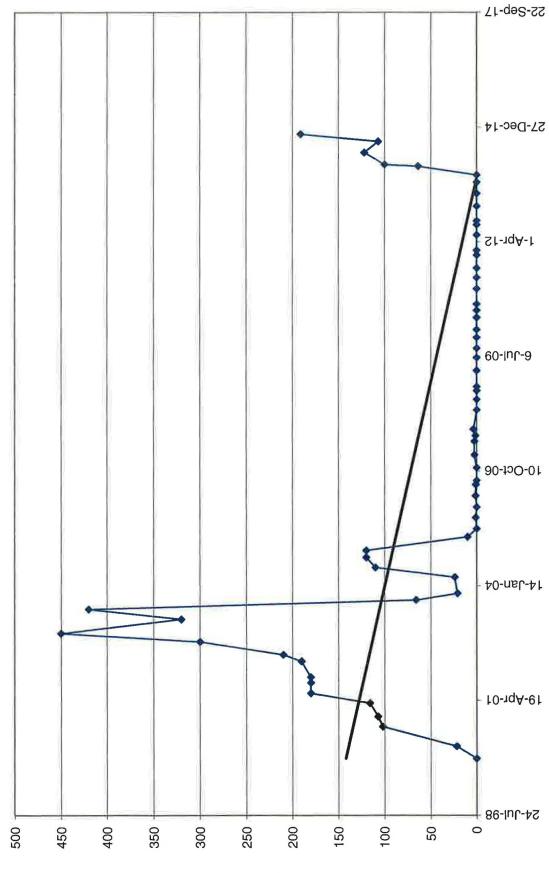


TW4-3 Chloroform Values


TW4-4 Chloroform Values

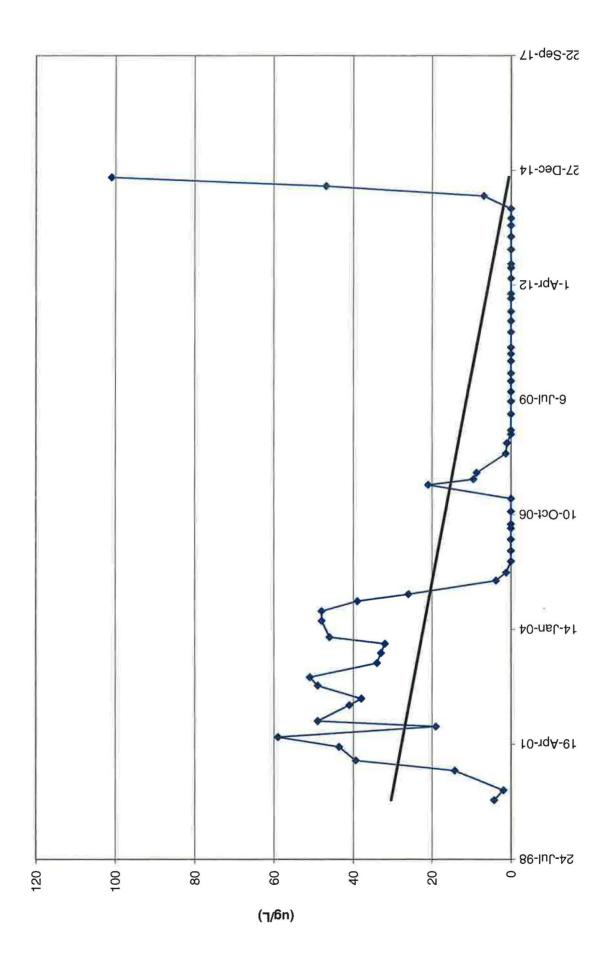
TW4-5 Chloroform Values

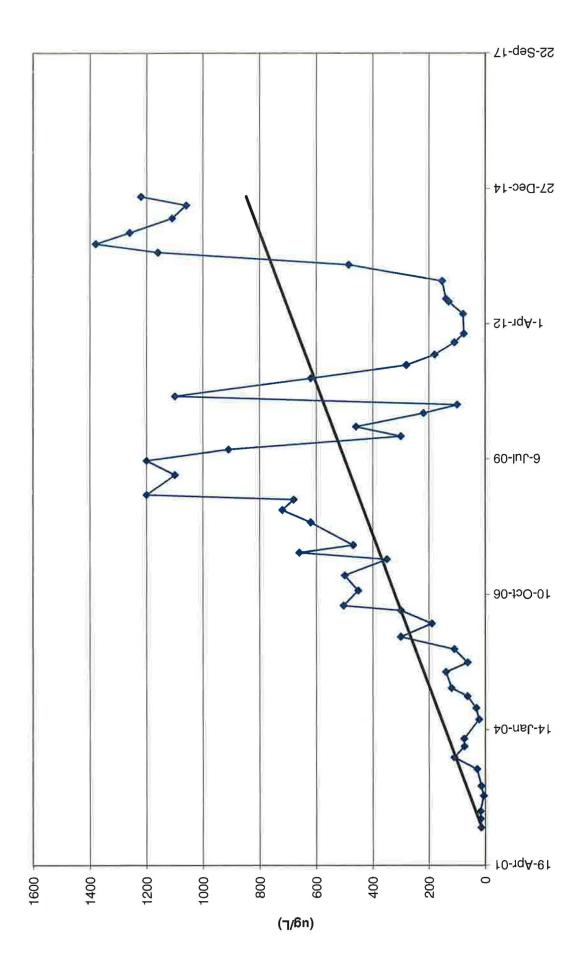

(ק/ɓn)

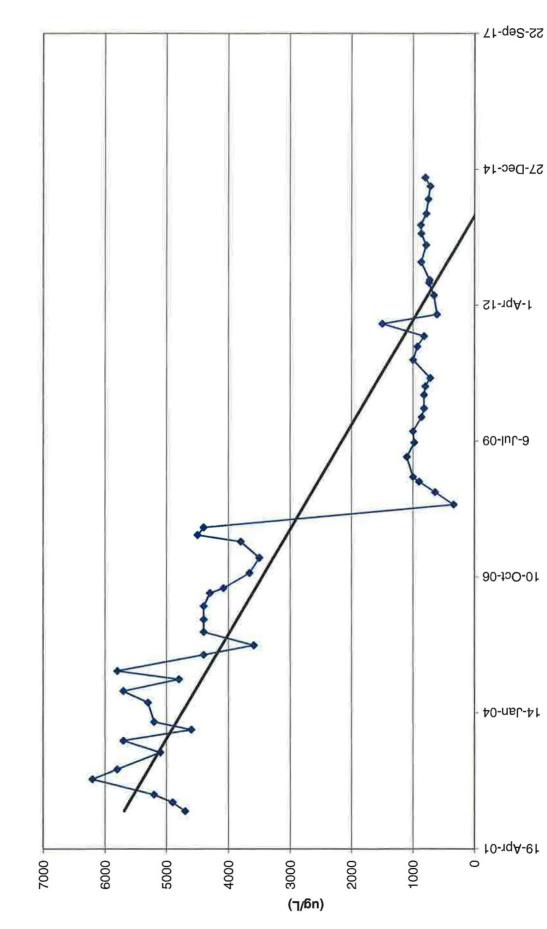


TW4-6 Chloroform Values

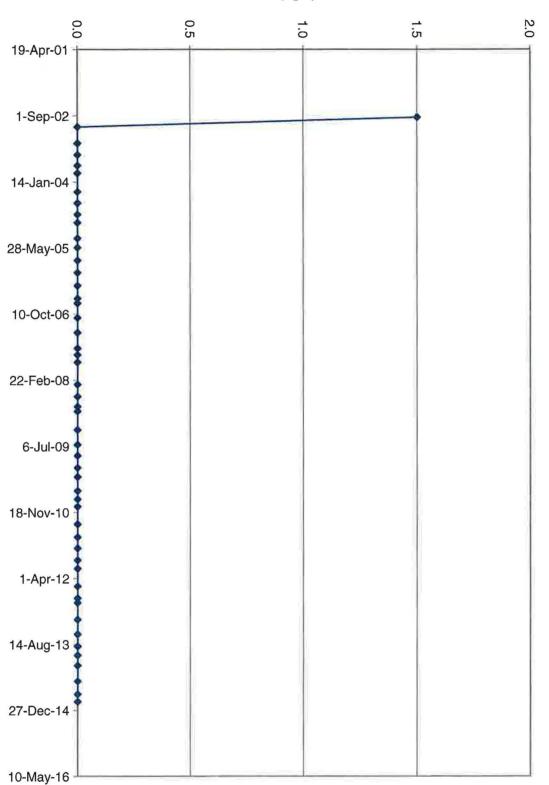
(ק/bn)

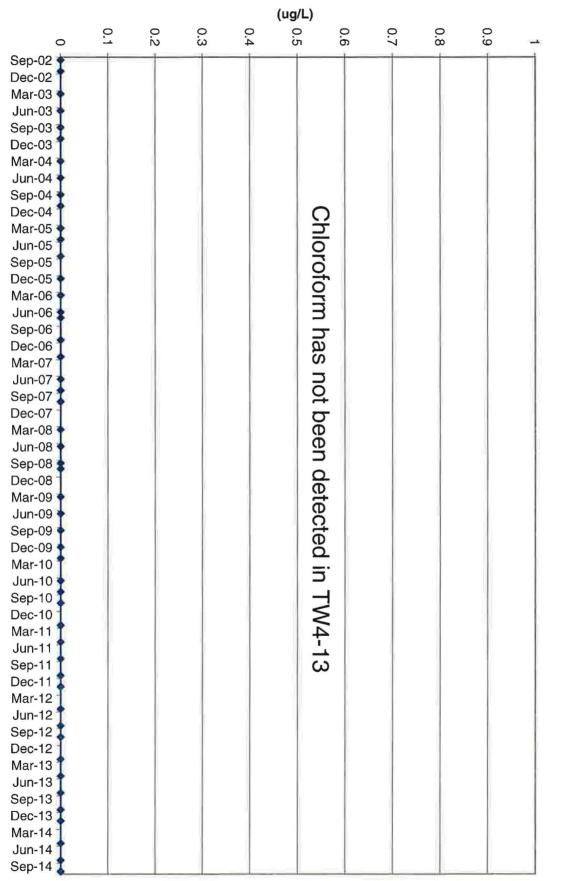




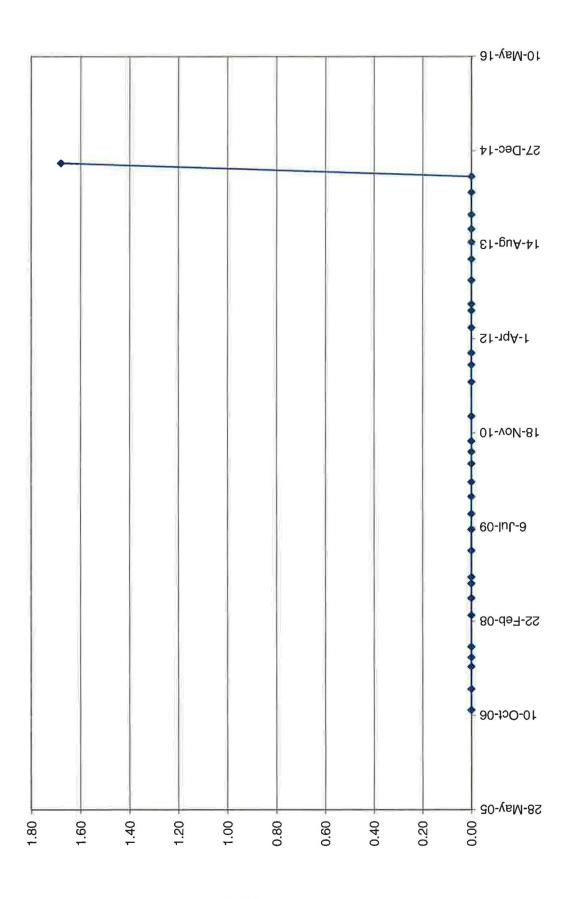

(ק/bn)

TW4-9 Chloroform Values

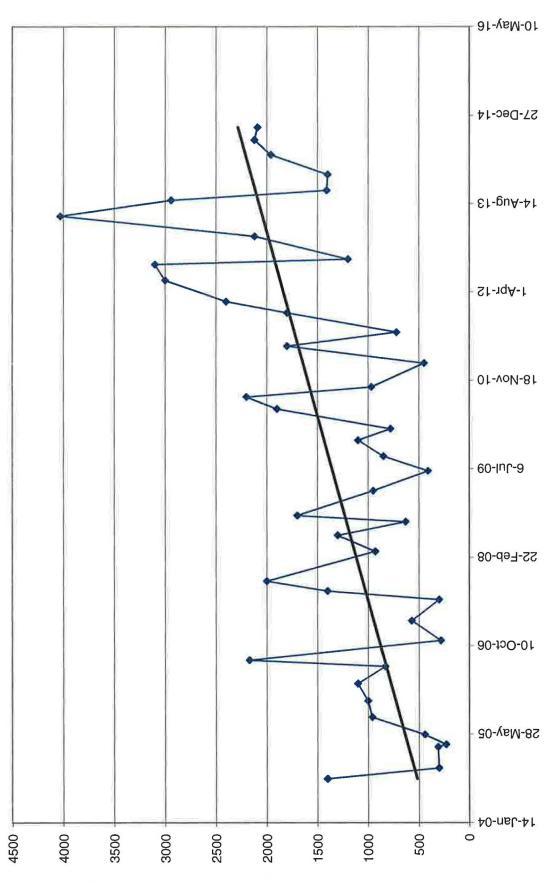




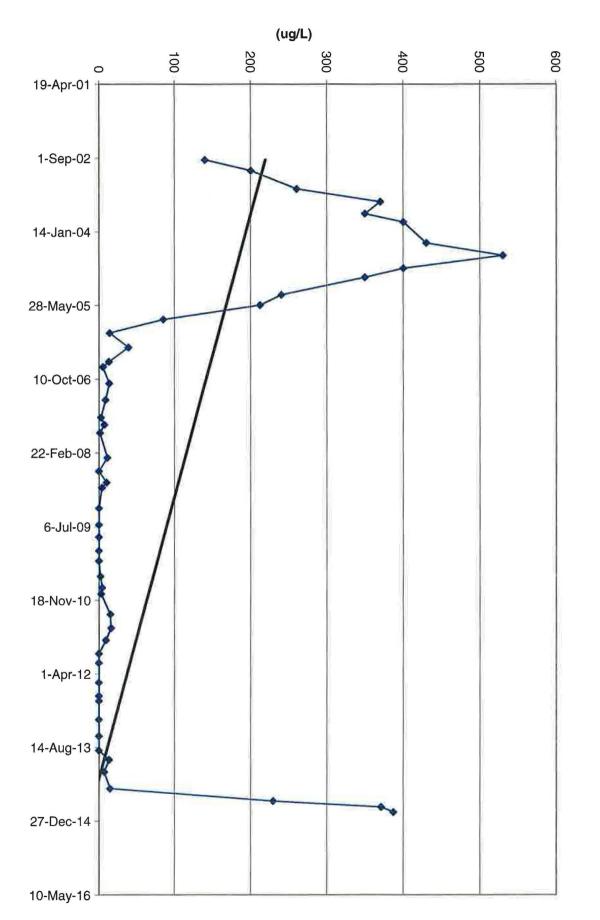
TW4-11 Chloroform Values

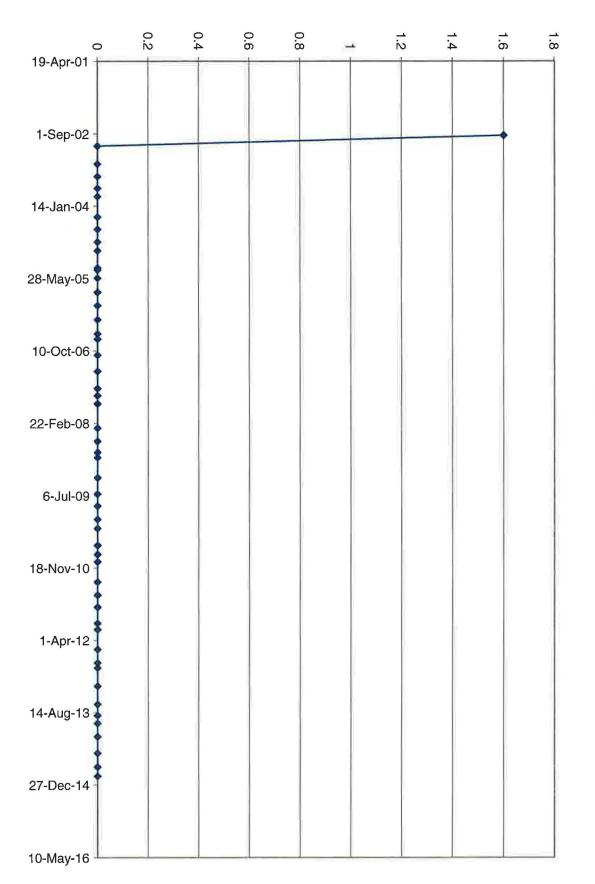

TW4-12 Chloroform Values

(ug/L)

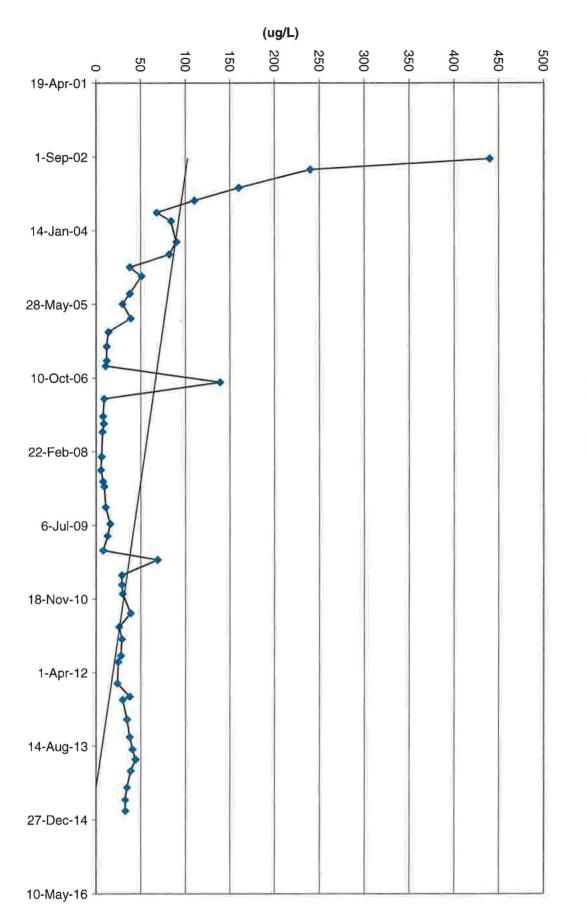


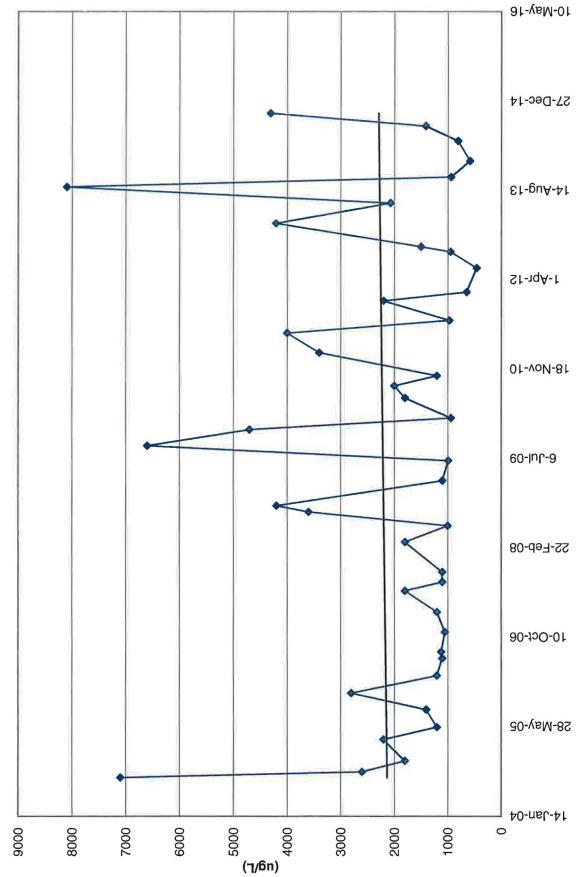
TW4-13 Chloroform Values


TW4-14 Chloroform Values

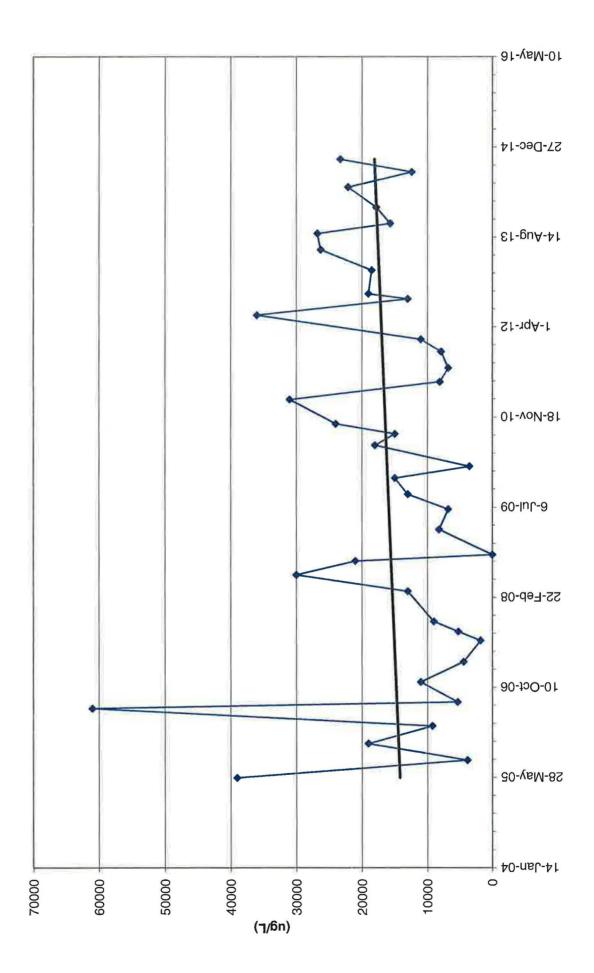

MW-26 Chloroform Values

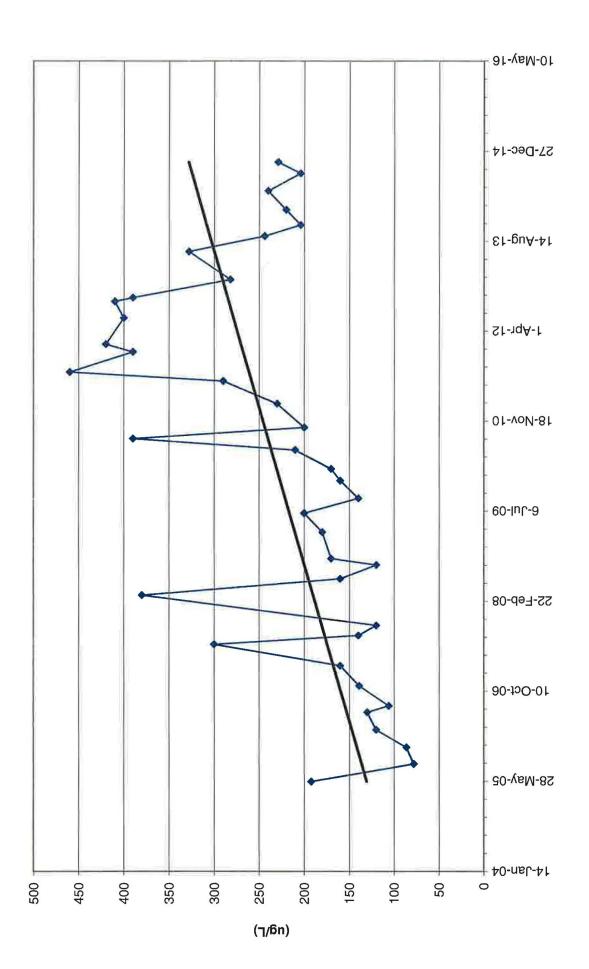
(⁊/ɓn)

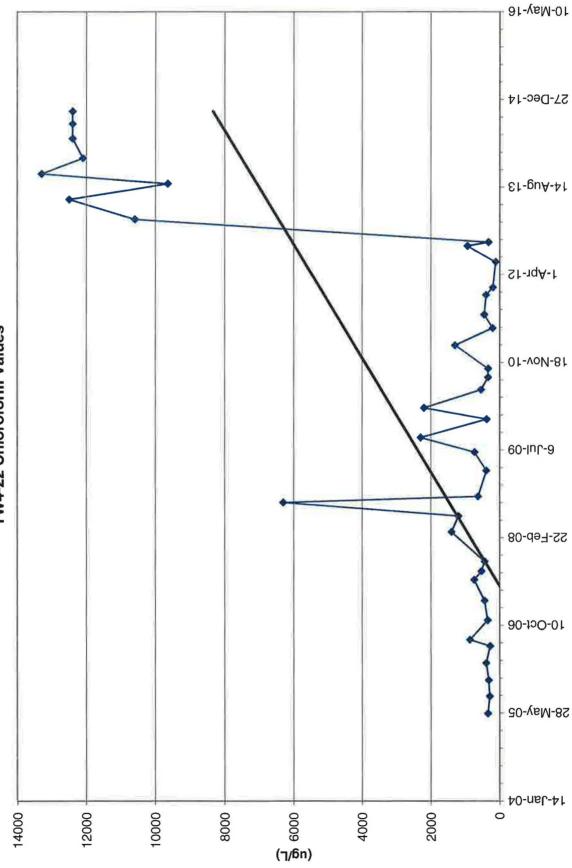




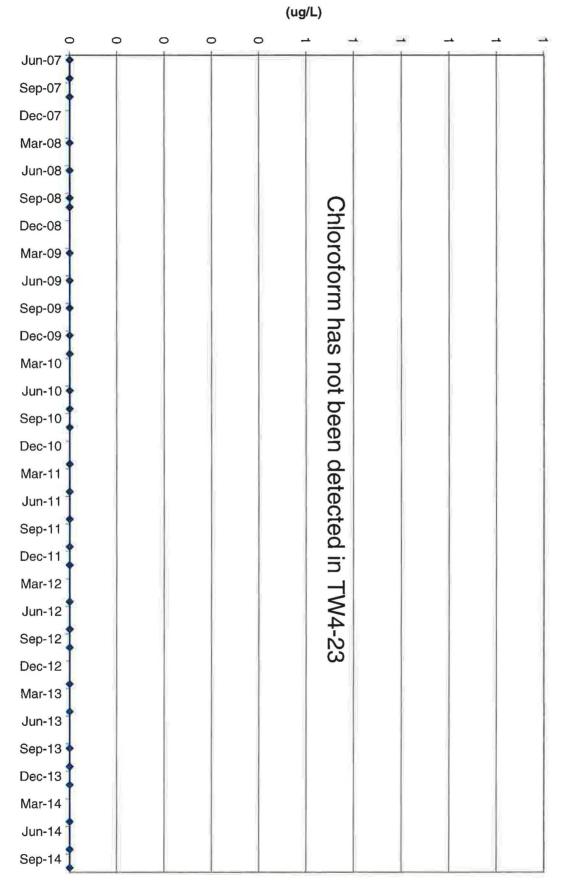
(ug/L)



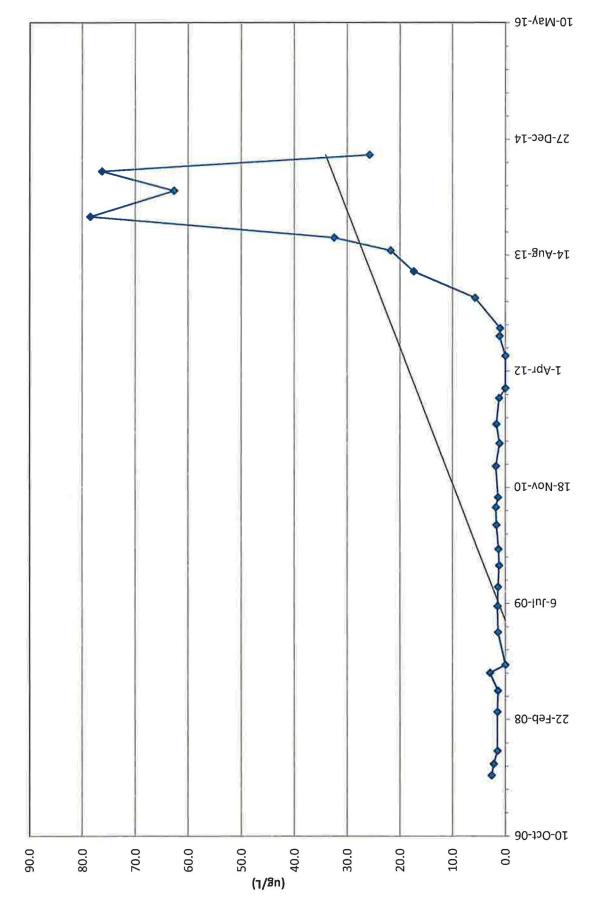


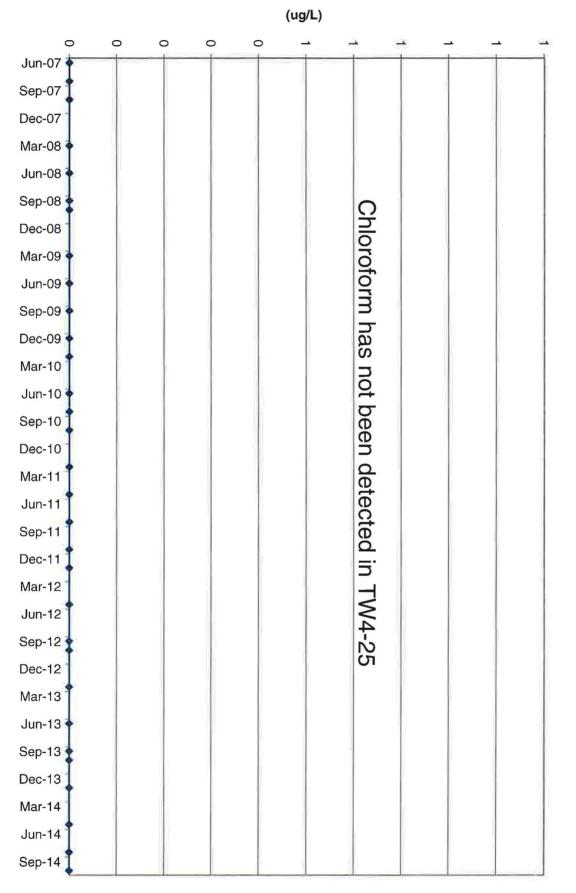

TW4-19 Chloroform Values

TW4-20 Chloroform Values

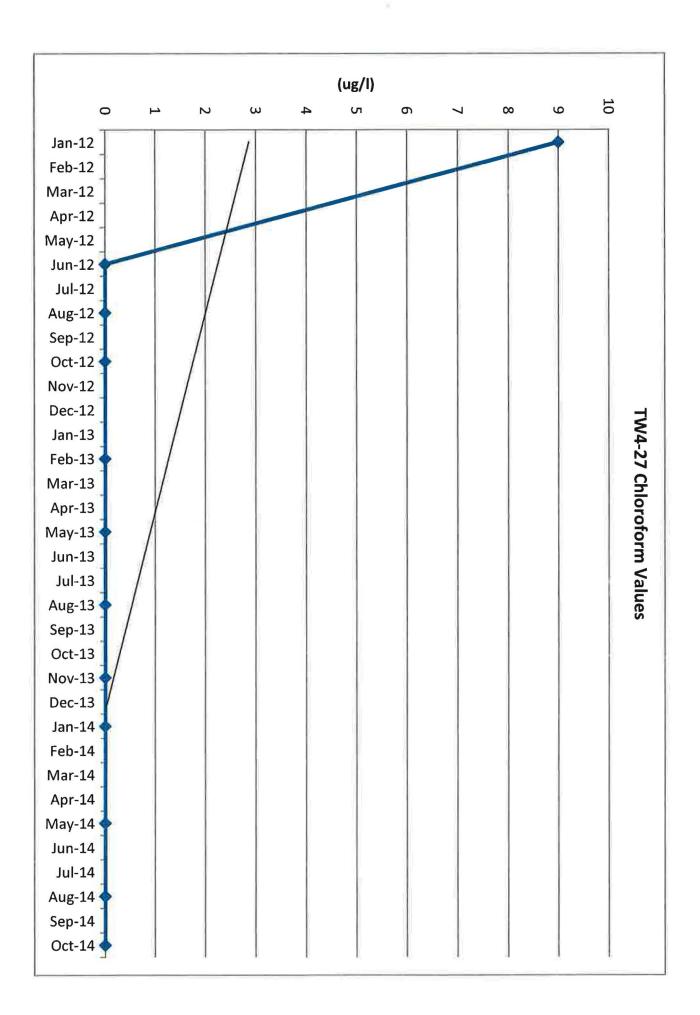


TW4-21 Chloroform Values

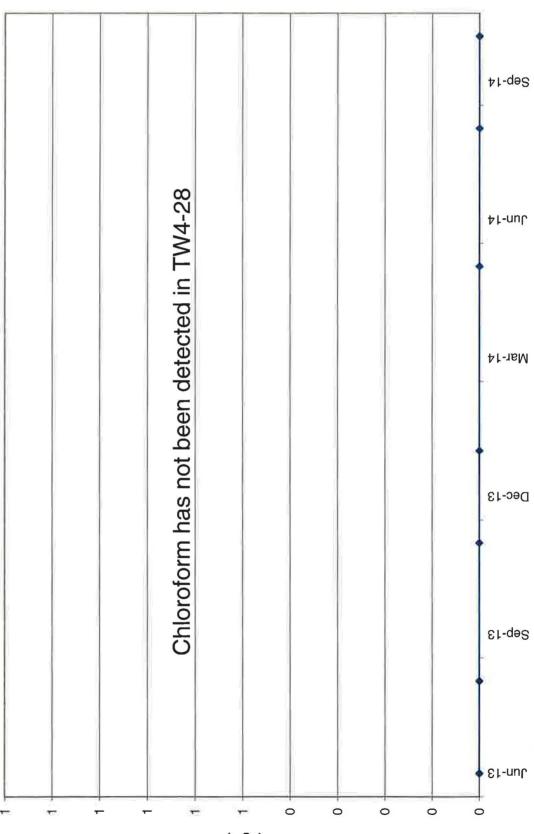


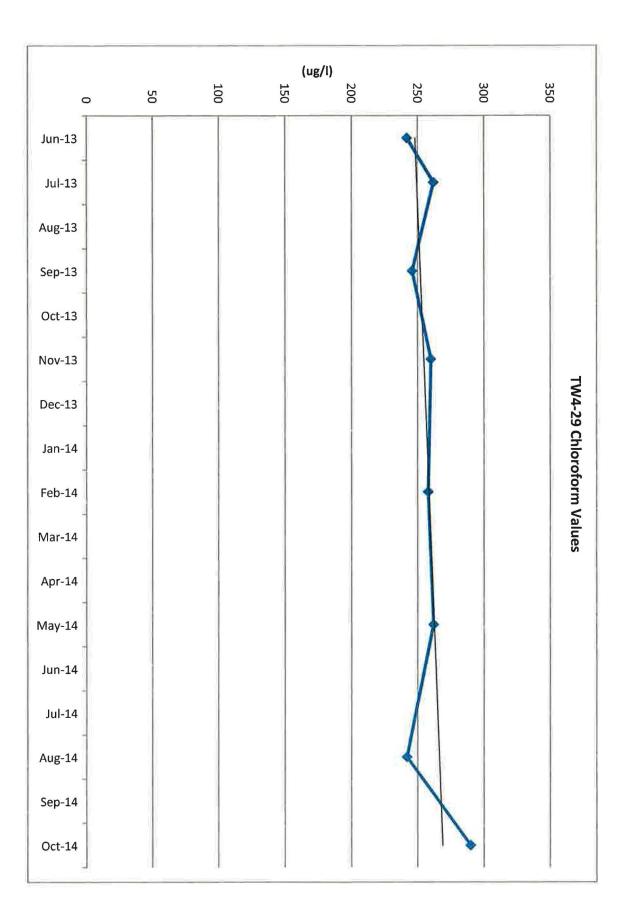

TW4-22 Chloroform Values


TW4-23 Chloroform Values

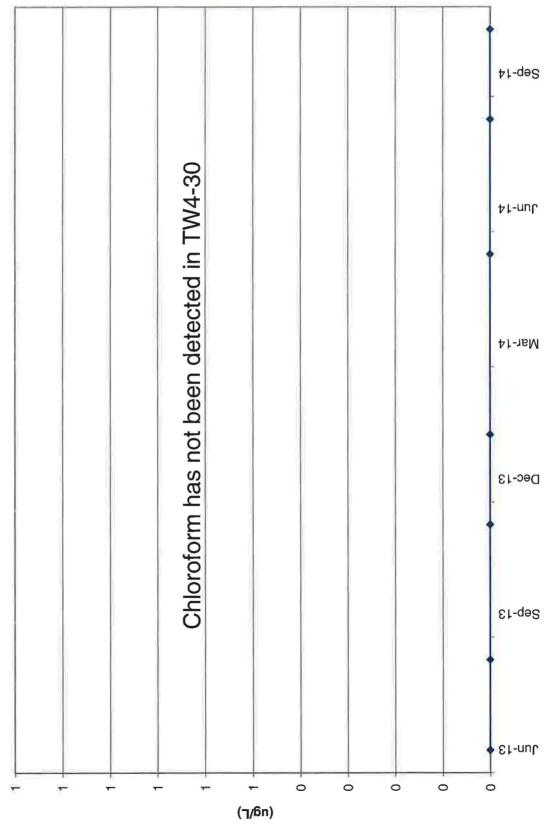


TW4-24 Chloroform Values



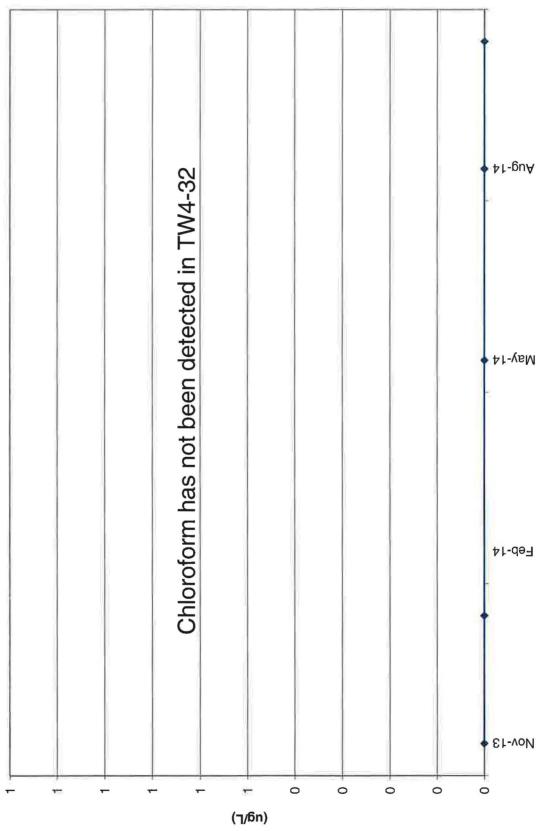


TW4-28 Chloroform Values

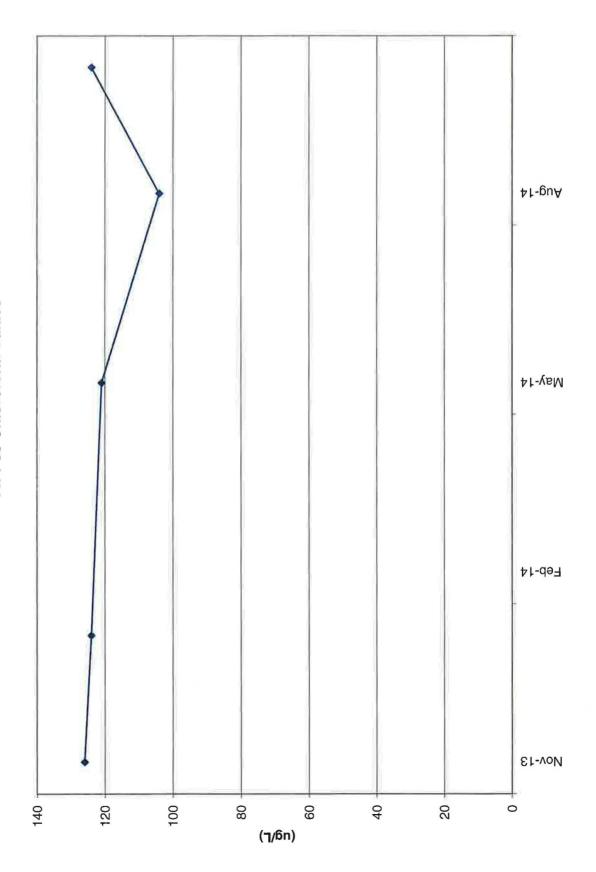

ų,


(ק/ɓn)

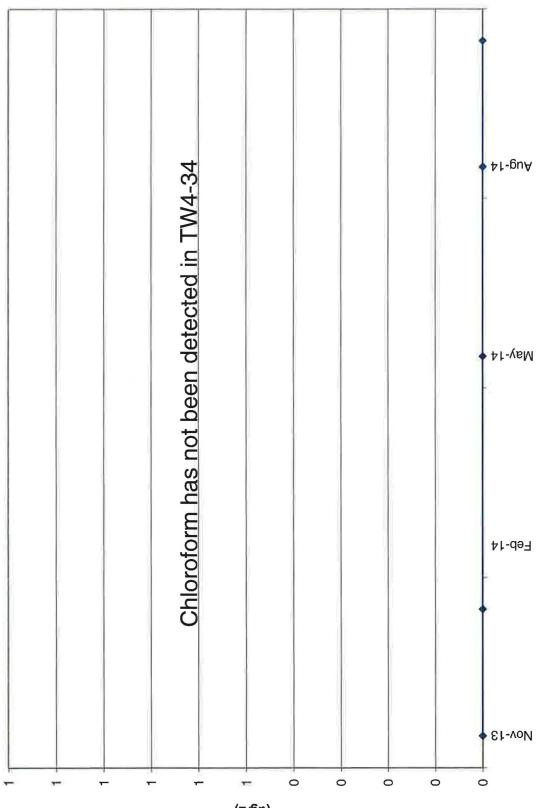
TW4-30 Chloroform Values



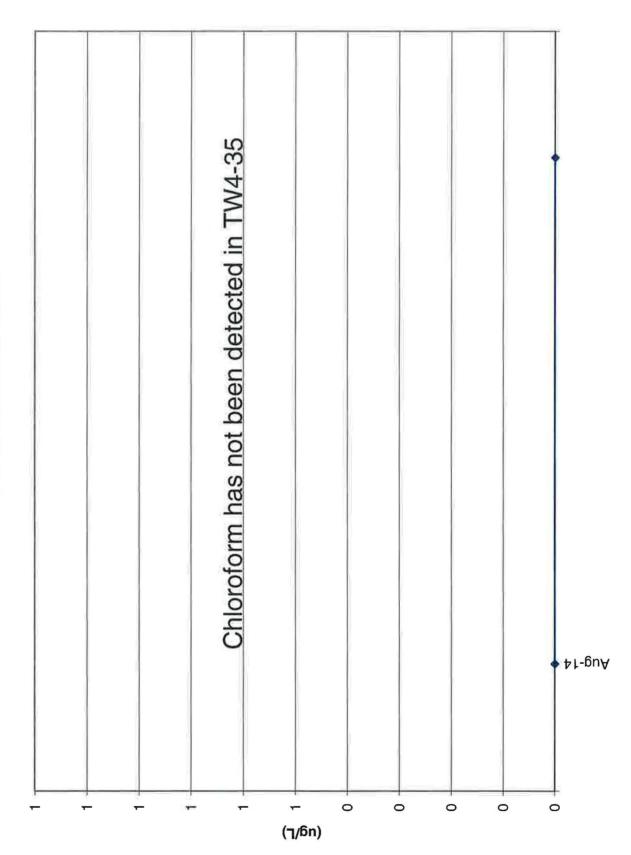
TW4-31 Chloroform Values



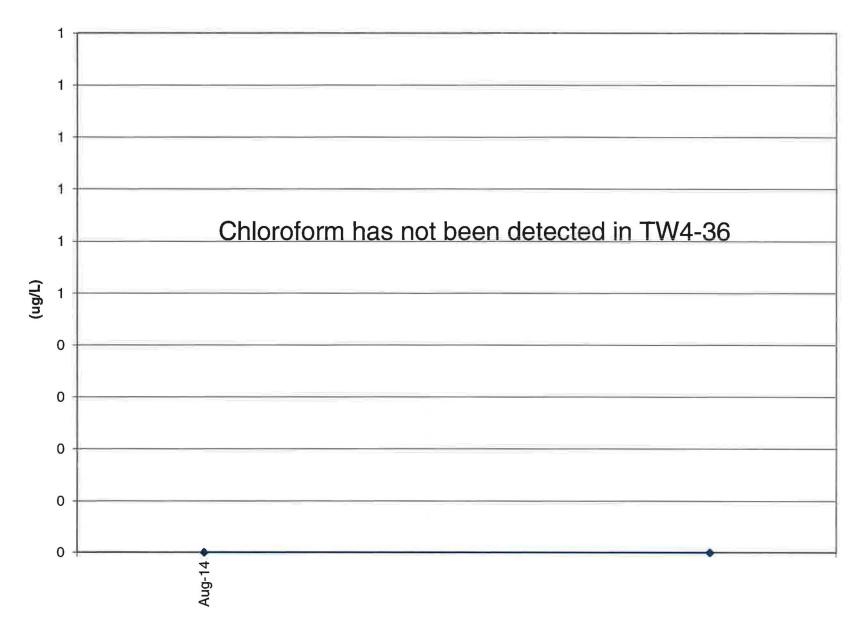
(ק/bn)


TW4-32 Chloroform Values

TW4-33 Chloroform Values



TW4-34 Chloroform Values



(ק/ɓn)

TW4-35 Chloroform Values

TW4-36 Chloroform Values

Tab M

CSV Transmittal Letter

Kathy Weinel

From: Sent:	Kathy Weinel Wednesday, February 25, 2015 8:45 AM
То:	Rusty Lundberg
Cc:	'Phil Goble'; 'Dean Henderson'; Harold Roberts; David Frydenlund; Jaime Massey; David Turk; Scott Bakken; Dan Hillsten
Subject: Attachments:	Transmittal of CSV Files White Mesa Mill 2014 Q4 Chloroform Monitoring 1410353-EDD.csv; 1410466-EDD.csv

Dear Mr. Lundberg,

Attached to this e-mail is an electronic copy of laboratory results for chloroform monitoring conducted at the White Mesa Mill during the fourth quarter of 2014, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel

Tab N

5-Day Notice Pursuant to the Chloroform Pumping Well Operations and Maintenance Plan,

January 5, 2015

VIA EMAIL AND OVERNIGHT DELIVERY

January 5, 2015

Mr. Rusty Lundberg Director of the Utah Division of Radiation Control State of Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144850 Salt Lake City, UT 84116-4850

Re: White Mesa Uranium Mill – Notice of Violation and Corrective Action Order UDEQ Docket No. UGW-20-01 Notice Pursuant to the Chloroform Pumping Well Operations and Maintenance Plan

Dear Mr. Lundberg:

Pursuant to the White Mesa Mill's (the "Mill's") Chloroform Pumping System Operations and Maintenance Plan ("Chloroform O&M Plan") Energy Fuels Resources (USA) Inc., ("EFRI") as operator of the Mill, is providing written Notice to the Utah Division of Radiation Control ("DRC") of a temporary outage in six chloroform capture pumping wells, as described in more detail below.

The Mill's Chloroform Pumping O&M Plan states that EFRI will notify DRC of malfunctions or abnormal operations that cannot be made operational within 24 hours of discovery. It was determined on Monday, December 29, 2014 that unscheduled down time had occurred which would last more than 24 hours. The down time was the caused by frozen transfer lines resulting from system/water line upgrades necessary to add three more continuous pumping wells to the chloroform pumping network. The down time during construction caused six continuous pumping wells to be off (not pumping) until the completion of construction. Initial notice of this outage was given by telephone to Mr. Phil Goble of DRC at approximately 1:00 pm on Monday December 29, 2014 (within 24 hours of the discovery).

1. Description of the Pumping System Outage

- a) The Mill's Chloroform O&M Plan, approved by DRC on April 8, 2013 states that EFRI will notify DRC of malfunctions or abnormal operation that cannot be "repaired and fully made operational within 24 hours of discovery."
- b) Pursuant to the draft chloroform Corrective Action Plan ("CAP"), EFRI voluntarily began conversion of chloroform wells TW4-1, TW4-2, TW4-11, and from monitoring wells to continuously pumping wells.

- c) The conversion of TW4-1, TW4-2, and TW4-11 from monitoring wells to continuously pumping wells required that the discharge lines be up-sized from a 1-inch line to a 4-inch line in order to handle the additional pumped water.
- d) The up-sizing of the discharge line required that the old 1-inch lines be excavated while the 4inch lines were connected. During the excavation the 1-inch lines, which were still connected to the existing pumping system, were exposed to the elements in the open trench.
- e) The Mill experienced below freezing temperatures for most of the week prior to December 29, 2014.
- f) Pumping wells MW-4, MW-26, TW4-4, TW4-20, TW4-22, and TW4-24 discharge into the line that was exposed during the construction. When the discharge line froze during the upsizing, the pumping in these wells was temporarily stopped.
- g) Mill personnel discovered, at approximately 10:30 am on December 29, 2014, that pumping in MW-4, MW-26 and TW4-4 had stopped due to the discharge line freezing.
- h) Mill personnel notified the EFRI Quality Assurance Manager ("QAM") of the cessation of pumping.
- i) The EFRI QAM notified Mr. Phil Goble of DRC at approximately 1:00 pm on Monday December 29, 2014 of the cessation of pumping.
- j) Mill personnel notified the EFRI QAM at approximately 3:00 pm on Monday December 29, 2014 that three additional wells which discharge to the exposed line had also frozen. The three additional wells are: TW4-20, TW4-22, and TW4-24.
- k) All of the pumps stopped when the discharge lines froze. The pumps were manually disconnected to prevent damage to the pumps or flow measurement instrumentation.
- Upon completion of the construction and thawing of the line (if necessary), the pumps will be reconnected and the system will be placed back into service. It is anticipated that the pumping system will be back in service on or before January 9, 2015.

2. Root Cause

The root cause analysis is as follows:

- a) A frozen discharge line caused the temporary outage and cessation of pumping.
- b) Due to the length of the discharge line, cold weather challenges, and the additional piping needed for the three new pumping wells, the construction could not be completed within a 24 window.

Letter to Rusty Lundberg January 5, 2015 Page 3 of 4

3. Period of Time the System Was Not in Operation

The pumps ceased operation on December 29, 2014. It is anticipated that the pumping system will be fully operational on or before January 9, 2015.

4. Date By Which the Pumping System Will Be Repaired and Operational

Pumping is expected to resume on or before January 9, 2015. This incident will be discussed in the appropriate quarterly chloroform reports as required by the Chloroform O&M Plan.

5. Steps taken to Repair and Have the System Fully Operational

- a) Construction and up-sizing activities are being completed with all of the resources available at the Mill.
- b) The system does not require repair and the temporary down time is the result of upgrades to the system and the addition of three pumping wells to the system. The three wells are being added prior to the final implementation of the chloroform CAP on a voluntary basis.

6. Steps Taken or That Will be Taken to Eliminate and Prevent Recurrence of System Failures

Since the temporary outage was not the result of a system failure but due to upgrades a formal corrective action is unnecessary. EFRI will strive to complete future system upgrades and pumping system additions in warmer weather as regulatory deadlines allow.

7. Additional Factors to Be Taken into Account

Although this incident does not fall within UAC R317-6-6.16, EFRI believes that the following should be taken into account by DRC in evaluating this incident.

a) Notification

By virtue of the initial oral notification given to DRC at 1:00 pm on Monday December 29, 2014 (within 24 hours of the discovery) and this written notice, EFRI has submitted notification as required by the EFRI chloroform O & M Plan.

b) Failure was not Intentional or Caused by EFRI's Negligence

The failure of the pumping system was not due to negligence on the part of EFRI or Mill personnel.

c) EFRI has Taken Adequate Measures to Meet the Conditions of the Chloroform O & M Plan

Mill personnel notified Corporate Compliance personnel within hours of the incident. DRC was notified on the same day as the incident, and within 24 hours. Mill personnel have dedicated all

Letter to Rusty Lundberg January 5, 2015 Page 4 of 4

available resources to the completion of the system additions and upgrades to reduce the amount of time the system is temporarily down.

d) The Provisions of UCA 19-5-107 Have Not Been Violated

The provisions of Utah Code 19-5-107 have not been violated. There has been no discharge of a pollutant into waters of the state. EFRI has not caused pollution which constitutes a menace to public health and welfare, or is harmful to wildlife, fish or aquatic life, or impairs domestic, agricultural, industrial, recreational, or other beneficial uses of water, nor has EFRI placed or caused to be placed any waste in a location where there is probable cause to believe it will cause pollution.

If you have any questions, please contact me at (303) 389-4134.

Yours very truly,

Lady Jourel

ENERGY FUELS RESOURCES (USA) INC. Kathy Weinel Quality Assurance Manager

cc Phil Goble Dean Henderson, DRC Dan Hillsten Harold R. Roberts David E. Turk